29,281 research outputs found

    Electrical conductivity and thermal dilepton rate from quenched lattice QCD

    Get PDF
    We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at T1.45TcT\simeq 1.45 T_c using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 TcT_c will be presented.Comment: 4 pages, 6 eps figures, to appear in the proceedings of Quark Matter 2011, 23-28 May 2011, Annecy, Franc

    Electron transfer through a multiterminal quantum ring: magnetic forces and elastic scattering effects

    Full text link
    We study electron transport through a semiconductor quantum ring with one input and two output terminals for an elastic scatterer present within one of the arms of the ring. We demonstrate that the scatterer not only introduces asymmetry in the transport probability to the two output leads but also reduces the visibility of the Aharonov-Bohm conductance oscillations. This reduction occurs in spite of the phase coherence of the elastic scattering and is due to interruption of the electron circulation around the ring by the potential defect. The results are in a qualitative agreement with a recent experiment by Strambini et al. [Phys. Rev. B {\bf 79}, 195443 (2009)]. We also indicate that the magnetic symmetry of the sum of conductance of both the output leads as obtained in the experiment can be understood as resulting from the invariance of backscattering to the input lead with respect to the magnetic field orientation.Comment: submitted to PR

    The weld-brazing metal joining process

    Get PDF
    Superior mechanical properties were obtained in metal joints weld-brazed between faying surfaces. Weld-braze applications and advantages are listed

    Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation

    Full text link
    It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock type singularities are presented.Comment: 19 page

    Development of aircraft lavatory compartments with improved fire resistance characteristics, phase 1: Fire containment test of a wide body aircraft lavatory module

    Get PDF
    A test was conducted to evaluate the fire containment characteristics of a Boeing 747 lavatory module. Results showed that the fire was contained within the lavatory during the 30-minute test period with the door closed. The resistance of the lavatory wall and ceiling panels and general lavatory construction to burn-through under the test conditions was demonstrated

    Comment on "c-axis Josephson tunneling in Dx2y2D_{x^2-y^2}-wave superconductors''

    Full text link
    This comment points out that the recent paper by Maki and Haas [Phys. Rev. B {\bf 67}, 020510 (2003)] is completely wrong.Comment: 1 page, submittted to Phys. Rev.

    Josephson (001) tilt grain boundary junctions of high temperature superconductors

    Full text link
    We calculate the critical current IcI_c across in-plane (001) tilt grain boundary junctions of high temperature superconductors. We solve for the electronic states corresponding to the electron-doped cuprates, two slightly different hole-doped cuprates, and an extremely underdoped hole-doped cuprate in each half-space, and weakly connect the two half-spaces by either specular or random quasiparticle tunneling. We treat symmetric, straight, and fully asymmetric junctions with s-, extended-s-, or dx2y2_{x^2-y^2}-wave order parameters. For symmetric junctions with random grain boundary tunneling, our results are generally in agreement with the Sigrist-Rice form for ideal junctions that has been used to interpret ``phase-sensitive'' experiments consisting of such in-plane grain boundary junctions. For specular grain boundary tunneling across symmetric juncitons, our results depend upon the Fermi surface topology, but are usually rather consistent with the random facet model of Tsuei {\it et al.} [Phys. Rev. Lett. {\bf 73}, 593 (1994)]. Our results for asymmetric junctions of electron-doped cuparates are in agreement with the Sigrist-Rice form. However, ou resutls for asymmetric junctions of hole-doped cuprates show that the details of the Fermi surface topology and of the tunneling processes are both very important, so that the ``phase-sensitive'' experiments based upon the in-plane Josephson junctions are less definitive than has generally been thought.Comment: 13 pages, 10 figures, resubmitted to PR

    Time scale of entropic segregation of flexible polymers in confinement: Implications for chromosome segregation in filamentous bacteria

    Full text link
    We report molecular dynamics simulations of the segregation of two overlapping chains in cylindrical confinement. We find that the entropic repulsion between the chains can be sufficiently strong to cause segregation on a time scale that is short compared to the one for diffusion. This result implies that entropic driving forces are sufficiently strong to cause rapid bacterial chromosome segregation.Comment: Minor changes. Added some references, corrected the labels in figure 6 and reformatted in two columns. Also added reference to published version in PR

    The phase-dependent linear conductance of a superconducting quantum point contact

    Full text link
    The exact expression for the phase-dependent linear conductance of a weakly damped superconducting quantum point contact is obtained. The calculation is performed by summing up the complete perturbative series in the coupling between the electrodes. The failure of any finite order perturbative expansion in the limit of small voltage and small quasi-particle damping is analyzed in detail. In the low transmission regime this nonperturbative calculation yields a result which is at variance with standard tunnel theory. Our result predicts the correct sign of the quasi-particle pair interference term and exhibits an unusual phase-dependence at low temperatures in qualitative agreement with the available experimental data.Comment: 12 pages (revtex) + 1 postscript figure. Submitted to Phys. Rev. Let
    corecore