47 research outputs found

    Reviewing the use of resilience concepts in forest sciences

    Get PDF
    Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed. Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context

    Problem structuring in participatory forest planning

    No full text

    Review. Supporting problem structuring with computerbased tools in participatory forest planning

    No full text

    Review. Supporting problem structuring with computer-based tools in participatory forest planning

    Get PDF
    <p><em>Aim of study:</em> This review presents the state-of-art of using computerized techniques for problem structuring (PS) in participatory forest planning. Frequency and modes of using different computerized tool types and their contribution for planning processes as well as critical observations are described, followed by recommendations on how to better integrate PS with the use of forest decision support systems.</p><p><em>Area of study:</em> The reviewed research cases are from Asia, Europe, North-America, Africa and Australia.</p><p><em>Materials and methods:</em> Via Scopus search and screening of abstracts, 32 research articles from years 2002–2011 were selected for review. Explicit and implicit evidence of using computerized tools for PS was recorded and assessed with content-driven qualitative analysis.</p><p><em>Main results:</em> GIS and forest-specific simulation tools were the most prevalent software types whereas cognitive modelling software and spreadsheet and calculation tools were less frequently used, followed by multi-criteria and interactive tools. The typical use type was to provide outputs of simulation–optimization or spatial analysis to negotiation situations or to compile summaries or illustrations afterwards; using software during group negotiation to foster interaction was observed only in a few cases.</p><p><em>Research highlights:</em> Expertise in both decision support systems and group learning is needed to better integrate PS and computerized decision analysis. From the knowledge management perspective, it is recommended to consider how the results of PS – e.g. conceptual models – could be stored into a problem perception database, and how PS and decision making could be streamlined by retrievals from such systems.</p><p><strong>Keywords</strong>: facilitated modeling; group negotiation; knowledge management; natural resource management; PSM; soft OR; stakeholders.</p
    corecore