176 research outputs found

    Identification of novel mutations in Chinese Hans with autosomal dominant polycystic kidney disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disease with an incidence of 1 in 400 to 1000. The disease is genetically heterogeneous, with two genes identified: <it>PKD1 </it>(16p13.3) and <it>PKD2 </it>(4q21). Molecular diagnosis of the disease in at-risk individuals is complicated due to the structural complexity of <it>PKD1 </it>gene and the high diversity of the mutations. This study is the first systematic ADPKD mutation analysis of both <it>PKD1 </it>and <it>PKD2 </it>genes in Chinese patients using denaturing high-performance liquid chromatography (DHPLC).</p> <p>Methods</p> <p>Both <it>PKD1 </it>and <it>PKD2 </it>genes were mutation screened in each proband from 65 families using DHPLC followed by DNA sequencing. Novel variations found in the probands were checked in their family members available and 100 unrelated normal controls. Then the pathogenic potential of the variations of unknown significance was examined by evolutionary comparison, effects of amino acid substitutions on protein structure, and effects of splice site alterations using online mutation prediction resources.</p> <p>Results</p> <p>A total of 92 variations were identified, including 27 reported previously. Definitely pathogenic mutations (ten frameshift, ten nonsense, two splicing defects and one duplication) were identified in 28 families, and probably pathogenic mutations were found in an additional six families, giving a total detection level of 52.3% (34/65). About 69% (20/29) of the mutations are first reported with a recurrent mutation rate of 31%.</p> <p>Conclusions</p> <p>Mutation study of <it>PKD1 </it>and <it>PKD2 </it>genes in Chinese Hans with ADPKD may contribute to a better understanding of the genetic diversity between different ethnic groups and enrich the mutation database. Besides, evaluating the pathogenic potential of novel variations should also facilitate the clinical diagnosis and genetic counseling of the disease.</p

    Ribonuclease Activity of Dis3 Is Required for Mitotic Progression and Provides a Possible Link between Heterochromatin and Kinetochore Function

    Get PDF
    BACKGROUND: Cellular RNA metabolism has a broad range of functional aspects in cell growth and division, but its role in chromosome segregation during mitosis is only poorly understood. The Dis3 ribonuclease is a key component of the RNA-processing exosome complex. Previous isolation of the dis3-54 cold-sensitive mutant of fission yeast Schizosaccharomyces pombe suggested that Dis3 is also required for correct chromosome segregation. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the progression of mitosis is arrested in dis3-54, and that segregation of the chromosomes is blocked by activation of the mitotic checkpoint control. This block is dependent on the Mad2 checkpoint protein. Double mutant and inhibitor analyses revealed that Dis3 is required for correct kinetochore formation and function, and that this activity is monitored by the Mad2 checkpoint. Dis3 is a member of the highly conserved RNase II family and is known to be an essential subunit of the exosome complex. The dis3-54 mutation was found to alter the RNaseII domain of Dis3, which caused a reduction in ribonuclease activity in vitro. This was associated with loss of silencing of an ura4(+) reporter gene inserted into the outer repeats (otr) and central core (cnt and imr) regions of the centromere. On the other hand, centromeric siRNA maturation and formation of the RITS RNAi effector complex was normal in the dis3-54 mutant. Micrococcal nuclease assay also suggested the overall chromatin structure of the centromere was not affected in dis3-54 mutant. CONCLUSIONS/SIGNIFICANCE: RNase activity of Dis3, a core subunit of exosome, was found to be required for proper kinetochore formation and establishment of kinetochore-microtubule interactions. Moreover, Dis3 was suggested to contribute to kinetochore formation through an involvement in heterochromatic silencing at both outer centromeric repeats and within the central core region. This activity is likely monitored by the mitotic checkpoint, and distinct from that of RNAi-mediated heterochromatin formation directly targeting outer centromeric repeats

    Genetic predisposition to mosaic Y chromosome loss in blood.

    Get PDF
    Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.This research has been conducted using the UK Biobank Resource under application 9905 and 19808. This work was supported by the Medical Research Council [Unit Programme number MC_UU_12015/2]. Full study-specific and individual acknowledgements can be found in the supplementary information

    Factors associated with spontaneous stone passage in a contemporary cohort of patients presenting with acute ureteric colic. Results from the MIMIC Study (A Multi-centre cohort study evaluating the role of Inflammatory Markers in patients presenting with acute ureteric Colic)

    Get PDF
    Objectives There is conflicting data on the role of white blood cell count (WBC) and other inflammatory markers in spontaneous stone passage in patients with acute ureteric colic. The aim of the study was to assess the relationship of WBC and other routinely collected inflammatory and clinical markers including stone size, stone position and Medically Expulsive Therapy use (MET) with spontaneous stone passage (SSP) in a large contemporary cohort of patients with acute ureteric colic. Subjects and Methods Multi‐centre retrospective cohort study coordinated by the British Urology Researchers in Surgical Training (BURST) Research Collaborative at 71 secondary care hospitals across 4 countries (United Kingdom, Republic of Ireland, Australia and New Zealand). 4170 patients presented with acute ureteric colic and a computer tomography confirmed single ureteric stone. Our primary outcome measure was SSP as defined by the absence of need for intervention to assist stone passage. Multivariable mixed effects logistic regression was used to explore the relationship between key patient factors and SSP. Results 2518 patients were discharged with conservative management and had further follow up with a SSP rate of 74% (n = 1874/2518). Sepsis after discharge with conservative management was reported in 0.6% (n = 16/2518). On multivariable analysis neither WBC, Neutrophils or CRP were seen to predict SSP, with an adjusted OR of 0.97 [95% CI 0.91 to 1.04, p = 0.38], 1.06 [95% CI 0.99 to 1.13, p = 0.1] and 1.00 [95% CI 0.99 to 1.00, p = 0.17], respectively. Medical expulsive therapy (MET) also did not predict SSP [adjusted OR 1.11 [95% CI 0.76 to 1.61]). However, stone size and stone position were significant predictors. SSP for stones 7mm. For stones in the upper ureter the SSP rate was 52% [95% CI 48 to 56], middle ureter was 70% [95% CI 64 to 76], and lower ureter was 83% [95% CI 81 to 85]. Conclusion In contrast to the previously published literature, we found that in patients with acute ureteric colic who are discharged with initial conservative management, neither WBC, Neutrophil count or CRP help determine the likelihood of spontaneous stone passage. We also found no overall benefit from the use of MET. Stone size and position are important predictors and our findings represent the most comprehensive stone passage rates for each mm increase in stone size from a large contemporary cohort adjusting for key potential confounders. We anticipate that these data will aid clinicians managing patients with acute ureteric colic and help guide management decisions and the need for intervention

    Biocatalytic production of bicyclic β-lactams with three contiguous chiral centres using engineered crotonases

    Get PDF
    YesThere is a need to develop asymmetric routes to functionalised β-lactams, which remain the most important group of antibacterials. Here we describe biocatalytic and protein engineering studies concerning carbapenem biosynthesis enzymes, aiming to enable stereoselective production of functionalised carbapenams with three contiguous chiral centres. Structurallyguided substitutions of wildtype carboxymethylproline synthases enable tuning of their C-N and C-C bond forming capacity to produce 5-carboxymethylproline derivatives substituted at C-4 and C-6, from amino acid aldehyde and malonyl-CoA derivatives. Use of tandem enzyme incubations comprising an engineered carboxymethylproline synthase and an alkylmalonylCoA forming enzyme (i.e. malonyl-CoA synthetase or crotonyl-CoA carboxylase reductase) can improve stereocontrol and expand the product range. Some of the prepared 4,6-disubstituted-5-carboxymethylproline derivatives are converted to bicyclic β-lactams by carbapenam synthetase catalysis. The results illustrate the utility of tandem enzyme systems involving engineered crotonases for asymmetric bicyclic β-lactam synthesis

    The Structure of Nidulin

    No full text
    corecore