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Biocatalytic production of bicyclic β-lactams with
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There is a need to develop asymmetric routes to functionalised β-lactams, which remain the

most important group of antibacterials. Here we describe biocatalytic and protein engineering

studies concerning carbapenem biosynthesis enzymes, aiming to enable stereoselective

production of functionalised carbapenams with three contiguous chiral centres. Structurally-

guided substitutions of wildtype carboxymethylproline synthases enable tuning of their C-N

and C-C bond forming capacity to produce 5-carboxymethylproline derivatives substituted at

C-4 and C-6, from amino acid aldehyde and malonyl-CoA derivatives. Use of tandem enzyme

incubations comprising an engineered carboxymethylproline synthase and an alkylmalonyl-

CoA forming enzyme (i.e. malonyl-CoA synthetase or crotonyl-CoA carboxylase reductase)

can improve stereocontrol and expand the product range. Some of the prepared 4,6-dis-

ubstituted-5-carboxymethylproline derivatives are converted to bicyclic β-lactams by car-

bapenam synthetase catalysis. The results illustrate the utility of tandem enzyme systems

involving engineered crotonases for asymmetric bicyclic β-lactam synthesis.
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β-lactams are vital antibiotics and are finding new therapeutic
applications1–4. Most bicyclic β-lactams (e.g. penicillins and
cephalosporins) are produced by fermentation, or mod-
ification of fermentation-derived materials. Carbapenems,

which are used for treatment of infections, including multidrug-
resistant bacteria5, are an exception. Carbapenems, which have at
least three chiral centres, are produced by synthesis with con-
sequent cost implications and limitations on derivatives that can
be produced. The carbapenem substitution pattern affects their
activities and pharmacokinetic profiles6. All clinically used car-
bapenems have the (6R)-hydroxyethyl sidechain (Fig. 1a) and
most of them are C-1 substituted, in order to increase potency
and avoid hydrolysis by dehydropeptidases7,8. There is a need to
develop efficient asymmetric routes for antibiotic production,
where cost of goods is important. With a view to enabling routes
to functionalised bicycle β-lactams, in particular C-1/C-6-func-
tionalised bicyclic β-lactams as in carbapenems, we are investi-
gating engineering of carbapenem biosynthesis enzymes9–11.

Three enzymes (CarA, B and C) are reported to catalyse bio-
synthesis of (5R)-carbapen-2-em-3-carboxylate (C3C) in Pecto-
bacterium carotovorum, with multiple enzymes being involved in
biosynthesis of thienamycin in Streptomyces cattleya12 (Fig. 1a).
The formation of (2S,5S)-carboxymethylproline (t-CMP), from
malonyl-CoA and pyroline-5-carboxylate (in equilibrium with L-
glutamate semialdehyde/5-hydroxyproline, collectively L-GHP),
as catalysed by CarB in P. carotovorum13–16 and ThnE in S.
cattleya17,18, is proposed as a common step in both pathways.
CarB and ThnE are carboxymethylproline synthases (CMPSs) of
the crotonase superfamily19,20. Most crotonases employ an oxy-
anion hole (OAH) to stabilise an enolate intermediate, usually
generated by decarboxylation of a malonyl-CoA derivative
(Fig. 1b and Supplementary Fig. 1). CarB/ThnE-catalysed C–C
bond formation is proposed to proceed via reaction of the enolate
intermediate with the (Re)-face of L-P5C to give a t-CMP-CoA
thioester, which is hydrolysed giving t-CMP (Fig. 1a)13,14.

The C-6 sidechain of natural C-1/C-6-functionalised carbape-
nems is likely introduced at a late stage during biosynthesis,
making the engineered production of C-6 carbapenem analogues
challenging21,22. Thus, there is interest in biocatalytic systems for
stereocontrolled synthesis of carbapenem precursors functiona-
lised at the C-1 and C-6-equivalent positions.

We describe the use of engineered CMPSs9–12,23–25, solely, and
in tandem with an alkylmalonyl-CoA-forming enzyme, to cata-
lyse the formation of 4,6-disubstituted-t-CMP stereoisomers, i.e.
products with three contiguous chiral centres. Some of these
products are converted by CarA giving bicyclic β-lactams. The
results illustrate the biocatalytic versatility of crotonases and the
utility of stereodifferentiating tandem enzyme reactions26–29, for
synthesis of functionalised β-amino acids and bicyclic β-lactams.

Results
CMPS 4,6-disubstituted-t-CMP preparation. The task of pro-
ducing C-1/C-6-functionalised carbapenams by CMPS catalysis is
complicated by potential epimerisation of the precursors, i.e. at
C-4 in L-GHP derivatives10 and at C-2 in malonyl-CoA deriva-
tives23. At least for C-2 malonyl CoA derivatives, such epimer-
isation can be exploited in dynamic kinetic resolution30,31. We
began by incubating 4,4-dimethyl-L-GHP10 (where C-4 epimer-
isation is irrelevant) and C-2 epimeric methylmalonyl-CoA with
wild-type CarB and variants (Fig. 2). A new peak with the
anticipated mass (m/z= 216 [M+H]+) was observed by LC–MS.
Following scale-up, using CarB H229A, the highest yielding
variant (as judged by NMR) (Supplementary Table 2), 1D/2D-
NMR analyses led to assignment of the product as (6R)-4,4,6-
trimethyl-t-CMP (Fig. 2a, Fig. 3, Table 1 entry 1, Supplementary

Figs. 2 and 3). Incubation of 4,4-dimethyl-L-GHP, C-2 epimeric
ethylmalonyl-CoA17 with CarB W79 variants (i.e. CarB W79F/A/
Y/S) resulted in a single observed product, assigned as (6R)-6-
ethyl-4,4-dimethyl-t-CMP (Fig. 2a, Table 1 entry 2, Supplemen-
tary Figs. 2, 4 and 5). Incubation of epimeric 4-methyl-L-GHP10

and dimethylmalonyl-CoA13 with wild-type CarB/variants
resulted in (> 95% detected product) (4S)-4,6,6-trimethyl-t-CMP
(Fig. 2b, Table 1 entry 3, Supplementary Figs. 2, 6 and 7),
revealing potential for stereoselective formation of C-4/C-6-
functionalised products. The tested ThnE/ThnE variants did not
catalyse formation of any of the above 4,6-trisubstituted-t-CMP
derivatives in detectable levels.

We then incubated epimeric 4-methyl-L-GHP and
methylmalonyl-CoA with wild-type CarB; we observed two
chromatographically distinct peaks with the anticipated mass
(m/z= 202 [M+H]+). Scale-up and 1D/2D-NMR analyses
revealed three stereoisomeric products: (4R,6R)-, (4S,6R)- and
(4S,6S)-4,6-dimethyl-t-CMP, in an ~50:25:25 ratio (Fig. 2c, Fig. 4
and Supplementary Figs. 8-11). CarB variants (Supplementary
Table 2) catalysed formation of the same diastereoisomers of 4,6-
dimethyl-t-CMP in varying yields and ratios, as confirmed by
NMR analysis (Table 1 entries 4–7, Fig. 4 and Supplementary
Fig. 11). No clear evidence for the formation of (4R,6S)-4,6-
dimethyl-t-CMP was accrued. Notably, CarB variants with a β-
branched residue at position-108 (i.e. CarB M108V/I) and CarB
Q111N manifested selective production of (4S,6R)-4,6-dimethyl-
t-CMP (Fig. 4). These observations guided us to test doubly
substituted CMPSs, i.e. CarBM108V/Q111N and CarB M108I/
Q111N, which manifest improved selectivity for production of
the (4S,6R)-diastereomer (d.e. ≥ 0.6, Fig. 4). While wild-type
ThnE catalysed formation of the 4,6-dimethyl-t-CMP isomers in
relatively low yields, ThnE V153-based variants (ThnE V153M/L/
A) catalysed formation of (4S,6S)-4,6-dimethyl-t-CMP, with d.
e. ≥ 0.86, in ~18% isolated yield (small scale) (Table 1, entry 6,
Fig. 4). Incubation of 4-methyl-L-GHP and (C-2 epimeric)
ethylmalonyl-CoA with CarB W79-based variants (other variants
gave lower yields) resulted in formation of three products with
stereochemistries analogous to the methylmalonyl-CoA incuba-
tions: (4R,6R)-, (4S,6R)- and (4S,6S)-6-ethyl-4-methyl-t-CMP
(Fig. 2c, Supplementary Figs. 12–15). The diastereomeric ratio
with the CarB W79F-catalysed reaction (the highest yielding
reaction, with 28% ‘isolated’ yield) was ~25 (4R,6R):59 (4S,6R):15
(4S,6S) (Table 1, entry 2). Incubation of 4,4-dimethyl-L-GHP and
dimethylmalonyl-CoA did not manifest the anticipated t-CMP
derivatives with any of the tested CMPSs (Supplementary
Table 2).

These results provide further insights into CMPS selectivity.
Consideration of the non-observed potential of CMPS products
(Fig. 5a) in the light of crystallographic analyses implies a role for
steric clashes in determining product outcomes. Thus, a clash
between the methyl group of (4R)-4-methyl-L-P5C and the
methyl group of the (E)-enolate (or a precursor of) may be
responsible for their apparent lack of reaction with the tested
CMPSs (Fig. 5b). The stereoselectivity of CarB variants with a β-
branched residue (Val, Ile) at the OAH-forming residue-108 for
formation of products with either (6R)- or (4S)-stereochemistry
(Fig. 4, green-shaded boxes) can be rationalised on steric grounds,
i.e. a clash between the methyl group of the (E)-enolate and the
methyl group of (4R)-4-methyl-L-P5C (Fig. 5b), or with the β-
methyl of the 108-valine/isoleucine residue is disfavoured
(Fig. 5c). Thus, CarB variants with a β-branched 108-residue
favour formation of the (4S,6R)-stereochemistry; this stereose-
lectivity is improved by Q111 substitution with Asn or Ala
(Table 1, entry 5, Fig. 4, green-shaded boxes), possibly due to
enhanced productive binding of the (4S)-4-methyl-L-P5C stereo-
isomer. On the other hand, we propose ThnE variants without a
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β-branched residue (Met, Leu and Ala) at residue-153 to favour
the formation of (4S,6S)-stereochemistry products (Table 1, entry
6, Fig. 4, grey-shaded boxes), because of a preference to
productively bind (4S)-4-methyl-L-P5C10 and hence form an
(E)-enolate25.

In addition to mechanistic implications (Fig. 5), these results
demonstrate the capacity of engineered CMPSs to catalyse
formation of 4,6-alkyl-substituted t-CMP derivatives in high
stereoselectivity. Although our ‘isolated’ yields are relatively low,

given the micro-scale and non-optimised nature of the reactions,
there is likely scope for improvement.

Ccr/CMPS (4S,6R)-disubstituted-t-CMP preparation. Crotonyl-
CoA carboxylase reductase (Ccr) catalyses formation of (2S)-
methylmalonyl-CoA and (2S)-ethylmalonyl-CoA from acryloyl-
CoA/CO2 or crotonyl-CoA/CO2, respectively (Fig. 6a)32,33. We
have reported on the use of coupled Ccr/CMPS catalysis for
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production of (6R)-6-alkyl-t-CMP derivatives, likely via selective
formation of the (Z)-enolate intermediates (Fig. 6a)24,25. We
investigated use of the coupled system for formation of (4S,6R)-
disubstituted-t-CMP derivatives, which are potential precursors
for clinically used carbapenems.

One-pot incubation of acryloyl-CoA, sodium bicarbonate and
4-methyl-L-GHP with CarB M108V/I, Ccr and NADPH resulted
in a mixture of (4R,6R)- and (4S,6R)-4,6-dimethyl-t-CMP in an
~5:95 ratio (Table 1, entry 8, Fig. 6a). Likewise, one-pot
incubation of crotonyl-CoA and 4-methyl-L-GHP with Ccr and
a CarB W79-based variant results in (4R,6R)- and (4S,6R)-4,6-
dimethyl-t-CMP in an ~1:9 ratio, with the highest yielding
variant being CarB W79F (Table 1, entry 9, Fig. 6a,

Supplementary Fig. 16). By contrast, incubation of crotonyl-
CoA and 4,4-dimethyl-L-GHP, catalysed by Ccr/CarB W79F (the
highest yielding coupled system), manifested the (6R)-6-ethyl-
4,4-dimethyl-t-CMP stereoisomer as the only observed product
by LC–MS/NMR analyses (Supplementary Fig. 5). These results
demonstrate that coupling with Ccr can enhance stereoselectivity
in CMPS-catalysed formation of (4S,6R)-disubstituted-t-CMP
derivatives.

MatB/CMPS-catalysed (4S,6S)-disubstituted-t-CMP prepara-
tion. MatB catalyses formation of (2R)-alkylmalonyl-CoA
derivatives, from achiral C-2 mono-alkylated malonic acid
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Fig. 3 4,6-Disubstituted-N-heterocycles by (tandem) CMPS catalysis. Shown products are from incubation of C-4-alkylated-L-GHP and C-2 alkylmalonyl-
CoAa, catalysed by the highest yielding/selective engineered CMPSs, or by use of MatB/CMPS or Ccr/CMPS. (S)-stereocentres are in red and (R)-
stereocentres are in blue, throughout, for positions 4 and 6. See Table 1 for a list of substrates, diastereomeric ratios and yields

Table 1 4,6-Disubstituted-N-heterocycles by (tandem) CMPS catalysis

See Fig. 3 for reaction scheme
aThe C-2-alkylated-malonyl-CoA derivatives are Ccr or MatB products (see text and Fig. 6 for details)
bd.r.: diastereomeric ratio of epimers at C-4 and/or C-6 of t-CMP derivatives, determined by 1H NMR and/or LC–MS, under standard conditions. cThe % yield (isolated) was calculated10,11,25 following
deprotection of amino acid aldehydes, incubation with enzyme(s), LC–MS purification and lyophilisation; products were quantified by NMR using [2H]4-trimethylsilylpropionate as a standard
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derivatives (Fig. 6b)24,34. We have reported on the use of
malonyl-CoA synthetase (MatB)/CMPS coupling for stereo-
selective production of (6S)-6-alkyl-t-CMP derivatives (rather
than the (6R)-epimer as with Ccr)24,34, likely via (E)-enolate
intermediates derived from (2R)-alkylmalonyl-CoA derivatives24

(Fig. 6b). With a view to enhancing stereoselectivity of CMPS-
catalysed formation of (4S,6S)-disubstituted-t-CMP derivatives,
we investigated one-pot incubation of methylmalonic acid with
4-methyl-L-GHP in the presence of a CMPS (Supplementary
Table 1), MatB, ATP and coenzyme A. A single product was
observed that was assigned as (4S,6S)-4,6-dimethyl-t-CMP
(Table 1, entry 10, Fig. 6b, Fig. 7).

We then investigated incubations with C-2-substituted-
malonic acid derivatives ranging from ethylmalonic acid to
derivatives with eight carbons. In some cases, reactions with 4-
methyl-L-GHP, catalysed by CarB W79A, manifested single
observed products, with the (4S,6S)-stereochemistry (shown by
NMR) (Table 1, entries 11–15, Fig. 6b, Supplementary Figs. 16–

21). Notably, the coupled MatB/CarBW79A system accepted
substrates with polar groups, e.g. 2-(2-cyanoethyl)malonic acid,
with a capacity for further modification (Table 1, entries 16–17,
Supplementary Figs. 22–25). The capacity of CarB W79A to
accept sterically demanding C-2-alkylated-malonyl-CoA deriva-
tives, compared with other CMPSs (Supplementary Table 2),
likely reflects its enlarged active site (Fig. 1b). In all tandem MatB/
CarB W79A incubations, it appears that the (E)-geometry of the
intermediate enolate, which results from the CarB W79A-
catalysed decarboxylation of the (2R)-alkylmalonyl-CoA (the
product of MatB catalysis), dictates the stereochemical outcome
at C-4 of the product. By contrast, for Ccr/CMPS catalysis with 4-
methyl-L-GHP, incubation of methylmalonic acid and 4,4-
dimethyl-L-GHP in the presence of a CMPS (Supplementary
Table 1) and MatB did not result in the formation of a CMP
derivative (by LC–MS analysis). This result was anticipated since
this reaction potentially involves a disfavoured interaction
between the (E)-enolate intermediate (resulting from the
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decarboxylation of (2S)-methylmalonyl-CoA, produced by MatB
catalysis) and (4 R)-4-methyl-L-P5C (Fig. 5b).

We then investigated the production of t-CMP derivatives with a
C-6 heteroatom, using the capacity of MatB to form 2-
methoxymalonyl-CoA from C-2 methoxymalonic acid (note that
the product stereochemistry of this MatB product is unassigned)34.
Unlike MatB/CMPS-catalysed incubation of 2-methylmalonic acid
and 4,4-dimethyl-L-GHP, which did not manifest a detectable t-
CMP product, incubation of methoxymalonic acid and 4,4-
dimethyl-L-GHP with MatB/CarB W79F (the highest yielding
coupled system), gave (6R)-4,4-dimethyl-6-methoxy-t-CMP as the
only observed product (by LC–MS, NMR) (Table 1, entry 18,
Supplementary Figs. 26 and 27). Incubation of methoxymalonic
acid and 4-methyl-L-GHP with MatB/CarB W79F gave three

stereoisomers (i.e. (4R,6R)-, (4S,6R)- and (4S,6S)-4,6-dimethyl-t-
CMP), in an ∼30:20:50 ratio (Table 1, entry 19, Fig. 6c,
Supplementary Figs. 26 and 28–33). The MatB/CarB M108V
system exhibited bias towards formation of the (4S,6R)-stereo-
isomer (~0.5 d.e., Table 1, entry 20); however, the MatB/CarB
W79S system exhibited bias towards the (4S,6S)-stereoisomer
(~0.8 d.e., Table 1, entry 21 and Supplementary Fig. 28). These
results imply that the 2-methoxymalonyl-CoA product of MatB
catalysis is either epimeric at C-2 or undergoes epimerisation
under assay conditions.

Bicyclic β-lactam production. To explore the utility of our
methods for producing β-lactams, we investigated 4,6-
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disubstituted-t-CMP derivatives as CarA substrates. The three
diastereomers of 4,6-dimethyl-t-CMP were converted by CarA
into carbapenams, as confirmed by LC–MS and NMR analyses on
crude reactions (Fig. 8, Table 2, entries 1–3, Supplementary
Figs. 34–36). Turnover was nearly complete for (4S,6R)-4,6-
dimethyl-t-CMP (≥ 90%), and ~65–70% for the other two ste-
reoisomers. In the case of a reaction of an ∼1:1 mixture of the C-6
epimers (4S,6R)- and (4S,6S)-4,6-dimethyl-t-CMP, CarA exhib-
ited a bias towards conversion of the (4S,6R)-stereoisomer (d.r. of
products= 2:1, by LC–MS and NMR analyses on crude products,
Supplementary Fig. 35).

We observed that (6R)-6-ethyl-t-CMP,25 but not (6S)-6-ethyl-
t-CMP25, is a good CarA substrate (75% conversion, Table 2,
entry 4 and Supplementary Fig. 37). By contrast, out of the three
CMPS-produced diastereomers of 4-methyl-6-ethyl-t-CMP, only
(4S,6R)-4-methyl-6-ethyl-t-CMP was selectively converted by
CarA (15% unoptimised small scale) (Table 2, entry 5,
Supplementary Fig. 38), giving a carbapenam with the substitu-
tion pattern and stereochemistry of clinical carbapenems at C-1
and C-6. The three stereoisomers of 4-methyl-6-methoxy-t-CMP
were relatively poor Car A substrates (~10% conversion was

observed by LC–MS (Table 2, entries 6–8, Supplementary
Fig. 34)).

Whilst under standard conditions, none of three 4,4,6-
trisubstituted t-CMP derivatives prepared (i.e. (6R)-4,4,6-tri-
methyl-t-CMP, (6R)-6-ethyl-4,4-dimethyl-t-CMP and (6R)-
4,4-dimethyl-6-methoxy-t-CMP) were Car A substrates, (4S)-
4,6,6-trimethyl-t-CMP underwent ~15% conversion to the
corresponding β-lactam (by LC–MS analysis) (Table 2, entry 9,
Supplementary Fig. 34). The preference of CarA for substrates
with the (4S-) and/or (6R)-stereochemistry is likely due to active
site steric constraints (Supplementary Fig. 39), while the poor
conversion of the 6-methoxy-t-CMP derivatives may additionally
reflect introduction of a polar group.

The hydrolytic stability of unsubstituted carbapenams/carba-
penems is reportedly low, to the extent that their isolation in the
free form (rather than as ester derivatives) has not been readily
possible35–38. We found that 1,6-disubstituted carbapenams are
hydrolysed more slowly than their unsubstituted or monosub-
stituted analogues10, which undergo hydrolysis during LC–MS
-guided purification/lyophilisation as evidenced by NMR. By
contrast, the t1/2 of the (1S,3S,5S,6S)-1,6-dimethyl carbapenem
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was ~42 days by NMR (4 °C, sodium formate pH ∼7), revealing
the stabilising effects of C-4/C-6 substitution.

Discussion
The stereocontrolled synthesis of heterocycles, such as bicyclic β-
lactams, with contiguous stereocentres is a challenge in develop-
ment of natural products/natural product like drugs. Our results

highlight the utility of engineered crotonases, and more generally
enzyme-catalysed reactions proceeding via enolate intermediates,
including when coupled with malonyl-CoA-forming enzymes, in
addressing aspects of this challenge. We have described reactions
with engineered CMPS enzymes with L-P5C giving CMP products
substituted at C-623-25. Introducing an epimeric methyl substituent
at C-4 of L-P5C10, with a view to selectively preparing (4,6)-dis-
ubstituted-t-CMP derivatives with the (4S)-stereochemistry, which
are potential precursors of 1β-methyl-carbapenams, increases the
number of potential products to four stereoisomers (assuming
conservation of (5S)-stereochemistry)10,11,13,25. The results (Fig. 3,
Table 1) reveal the potential of engineered CMPS catalysis for
stereocontrolled production of (4,6)-disubstituted-t-CMP deriva-
tives, not only with the desired (4S,6R)-stereochemistry, as in most
clinically used carbapenems, but for C-4/C-6-trisubstituted pro-
ducts (i.e. mono-alkylated at one of C-4 or C-6 and dialkylated at
one of C-4 or C-6).

In the case of CMPS-catalysed reaction of C-2 epimeric
alkylmalonyl-CoA with C-4 epimeric 4-methyl-L-P5C (Fig. 2c), of
the four possible stereomeric products, one was not observed
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under standard conditions, i.e. the (4R,6S)-product. We propose
that this is due to a steric clash involving the (E)-trisubstituted
enolate and the methyl group of (4R)-methyl-L-P5C (Fig. 5b).
This proposal implies scope for further engineering or expanding
the scope of CMPS catalysis. Interestingly, substituting one of the
oxyanion hole-forming residues (108CarB/153ThnE) has a major
impact on C4/C6 stereocontrol; variants with a β-branched
residue at this position favour formation of (4S,6R)-products,
while ThnE variants lacking a β-branched residue favour for-
mation of (4S,6S)-products (Fig. 5).

The results also reveal the capacity of the tandem MatB/CMPS
system to enhance stereoselective formation of certain (4S,6S)-
disubstituted-t-CMP derivatives, and to expand the range of
accepted substrates. Thus, the stereoselectivity of CMPS-catalysed
process can be enhanced by coupling an appropriately engineered
CMPS with a malonyl CoA synthetase starting from a P5C
derivative and an achiral C2-alkylated malonic acid derivative.
Except for the case of 2-methoxymalonic acid, coupling MatB
catalysis to that of engineered CMPSs enabled stereoselective
formation of (4S,6S)-disubstituted-t-CMP derivatives, in some
cases with high stereocontrol at C-4 and C-6. Similarly, coupling
Ccr to engineered CMPSs enabled stereoselective formation of
(4S,6R)-disubstituted-t-CMP derivatives, again with high stereo-
control at C-6 and > 75% stereocontrol at C-4. The range of
substrates transformed by the MatB/CMPS pairs, including some
with a heteroatom at C-6 is substantial. Some of these were
converted by CarA into bicyclic β-lactams demonstrating the
viability of the MatB–CMPS–CarA process for production of 1β-
methyl-substituted carbapenams. Notably some of these products
manifested improved hydrolytic stability compared with the
unsubstituted 1β-carbapenams35–38. Thus, although challenges
remain in developing the methods described here for the large-

scale preparation of useful carbapenems, the results clearly
demonstrate that engineering of biosynthesis enzymes has
potential for the stereocontrolled production of functionalised
bicyclic β-lactam derivatives.

Methods
Preparation of enzymes and variants reported. For details, see Supplementary
Methods. All proteins were prepared and purified to > 95% by SDS-PAGE analysis.
Mutagenesis of the plasmid-bearing carB or thnE genes was performed according
to the QuikChange Site-Directed Mutagenesis Protocol (Stratagene). Supplemen-
tary Table 1 gives the oligonucleotide primers used for carB double-variants pre-
paration. For a full list of the variants prepared and tested, see Supplementary Fig. 1
and Supplementary Table 2.

Enzyme assays. Small- and large-scale assays of CMPSs, coupled MatB–CMPS,
coupled Ccr–CMPS and CarA assays were performed and analysed as described in
the Supplementary Methods and Supplementary Tables 3–5.

Structural assignment of reported catalytic products. A combination of (high)-
resolution MS and 2D-NMR analysis was employed, as fully detailed within the
Supplementary Methods. Stereochemistries were assigned through combined
analysis of 3JHH coupling constants and 2D NOESY, assuming that the (S)-ste-
reochemistry at C-2 is maintained during the acid-mediated deprotection of amino
acid semialdehydes and product formation, as has been already confirmed17 (see
Supplementary Figs. 2–38).

Quantification of yields and diastereomeric ratio of the products of CMPS and
CarA catalysis. Yields of different products of CMPS and CarA catalysis were
calculated using a combination of LC–MS and 1H NMR spectroscopy, as detailed
within the text (Fig. 3, Table 1 and as previously reported10,11,25).

Data availability
Data are available from the corresponding author on reasonable request.

Table 2 Conversion of 4,6-substituted-t-CMP derivatives into carbapenams

See Fig. 8 for reaction scheme
a% conversion by carbapenam synthetase catalysis, into 1,6-substituted-carbapenam-3-carboxylate (C3C) products was determined by LC–MS analysis measuring substrate conversion, in comparison with
a control uncatalysed reaction. Rn=H, unless otherwise stated. (S)-stereocentres are in red and (R)-stereocentres are in blue, throughout, for positions 1 and 6
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