719 research outputs found

    Probing the internal solar magnetic field through g-modes

    Get PDF
    The observation of g-mode candidates by the SoHO mission opens the possibility of probing the internal structure of the solar radiative zone (RZ) and the solar core more directly than possible via the use of the p-mode helioseismology data. We study the effect of rotation and RZ magnetic fields on g-mode frequencies. Using a self-consistent static MHD magnetic field model we show that a 1% g-mode frequency shift with respect to the Solar Seismic Model (SSeM) prediction, currently hinted in the GOLF data, can be obtained for magnetic fields as low as 300 kG, for current measured modes of radial order n=-20. On the other hand, we also argue that a similar shift for the case of the low order g-mode candidate (l=2, n=-3) frequencies can not result from rotation effects nor from central magnetic fields, unless these exceed 8 MG.Comment: 6 pages, 2 figures; final version to appear in MNRA

    Coriolis force corrections to g-mode spectrum in 1D MHD model

    Get PDF
    The corrections to g-mode frequencies caused by the presence of a central magnetic field and rotation of the Sun are calculated. The calculations are carried out in the simple one dimensional magnetohydrodynamical model using the approximations which allow one to find the purely analytical spectra of magneto-gravity waves beyond the scope of the JWKB approximation and avoid in a small background magnetic field the appearance of the cusp resonance which locks a wave within the radiative zone. These analytic results are compared with the satellite observations of the g-mode frequency shifts which are of the order one per cent as given in the GOLF experiment at the SoHO board. The main contribution turns out to be the magnetic frequency shift in the strong magnetic field which obeys the used approximations. In particular, the fixed magnetic field strength 700 KG results in the mentioned value of the frequency shift for the g-mode of the radial order n=-10. The rotational shift due to the Coriolis force appears to be small and does not exceed a fracton of per cent, \alpha_\Omega < 0.003.Comment: RevTeX4, 9 pages, 4 eps figures; accepted for publication in Astronomy Reports (Astronomicheskii Zhurnal

    Solar opacity, neutrino signals and helioseismology

    Get PDF
    In connection with the recent suggestion by Tsytovich et al. that opacity in the solar core could be overestimated, we consider the following questions: i) What would a 10\% opacity reduction imply for the solar neutrino puzzle? ii) Is there any hope of solving the solar neutrino puzzle by changing opacity? iii) Is a 10\% opacity reduction testable with helioseismological data?Comment: revtex file of 3 pages + 2 postscipt figures, in a uuencoded compressed tarred file, send any offprint request to [email protected]

    Standard Solar models in the Light of New Helioseismic Constraints II. Mixing Below the Convective Zone

    Full text link
    In previous work, we have shown that recent updated standard solar models cannot reproduce the radial profile of the sound speed at the base of the convective zone (CZ) and fail to predict the Li7 depletion. In parallel, helioseismology has shown that the transition from differential rotation in the CZ to almost uniform rotation in the radiative solar interior occurs in a shallow layer called the tachocline. This layer is presumably the seat of large scale circulation and of turbulent motions. Here, we introduce a macroscopic transport term in the structure equations, which is based on a hydrodynamical description of the tachocline proposed by Spiegel and Zahn, and we calculate the mixing induced within this layer. We discuss the influence of different parameters that represent the tachocline thickness, the Brunt-Vaissala frequency at the base of the CZ, and the time dependence of this mixing process along the Sun's evolution. We show that the introduction of such a process inhibits the microscopic diffusion by about 25%. Starting from models including a pre-main sequence evolution, we obtain: a) a good agreement with the observed photospheric chemical abundance of light elements such as He3, He4, Li7 and Be9, b) a smooth composition gradient at the base of the CZ, and c) a significant improvement of the sound speed square difference between the seismic sun and the models in this transition region, when we allow the phostospheric heavy element abundance to adjust, within the observational incertitude, due to the action of this mixing process. The impact on neutrino predictions is also discussed.Comment: 15 pages, 7 figures, to be published in ApJ (used emulateapj style for latex2e). New email for A. S. Brun: [email protected]

    Helioseismology, solar models and solar neutrinos

    Get PDF
    We review recent advances concerning helioseismology, solar models and solar neutrinos. Particularly we shall address the following points: i) helioseismic tests of recent SSMs; ii)the accuracy of the helioseismic determination of the sound speed near the solar center; iii)predictions of neutrino fluxes based on helioseismology, (almost) independent of SSMs; iv)helioseismic tests of exotic solar models.Comment: 11 pages with 6 ps figures included, procsla style, based on the talks presented at Neutrino Telescopes '99, Venice, February 1999, and at Valencia '99, Valencia, May 1999, to appear in the proceeding

    Cloud-Based Desktop Services for Thin Clients

    Full text link
    corecore