In previous work, we have shown that recent updated standard solar models
cannot reproduce the radial profile of the sound speed at the base of the
convective zone (CZ) and fail to predict the Li7 depletion. In parallel,
helioseismology has shown that the transition from differential rotation in the
CZ to almost uniform rotation in the radiative solar interior occurs in a
shallow layer called the tachocline. This layer is presumably the seat of large
scale circulation and of turbulent motions. Here, we introduce a macroscopic
transport term in the structure equations, which is based on a hydrodynamical
description of the tachocline proposed by Spiegel and Zahn, and we calculate
the mixing induced within this layer. We discuss the influence of different
parameters that represent the tachocline thickness, the Brunt-Vaissala
frequency at the base of the CZ, and the time dependence of this mixing process
along the Sun's evolution. We show that the introduction of such a process
inhibits the microscopic diffusion by about 25%. Starting from models including
a pre-main sequence evolution, we obtain: a) a good agreement with the observed
photospheric chemical abundance of light elements such as He3, He4, Li7 and
Be9, b) a smooth composition gradient at the base of the CZ, and c) a
significant improvement of the sound speed square difference between the
seismic sun and the models in this transition region, when we allow the
phostospheric heavy element abundance to adjust, within the observational
incertitude, due to the action of this mixing process. The impact on neutrino
predictions is also discussed.Comment: 15 pages, 7 figures, to be published in ApJ (used emulateapj style
for latex2e). New email for A. S. Brun: [email protected]