881 research outputs found

    Dynamic nuclear polarization from current-induced electron spin polarization

    Get PDF
    Current-induced electron spin polarization is shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Saturated fields of several millitesla are generated upon the application of electric field over a timescale of a hundred seconds in InGaAs epilayers and measured using optical Larmor magnetometry. The dependence on temperature, external magnetic field, and applied voltage is investigated. We find an asymmetry in which the saturation nuclear field depends on the relative alignment of the electrically generated spin polarization and the external magnetic field, which we attribute to an interplay between various electron spin dynamical processes.Comment: 5 pages, 4 figure

    Combustion Products Monitor: Trade Study Testing

    Get PDF
    Current combustion products monitoring on the International Space Station (ISS) uses a handheld device (Compound Specific Analyzer-Combustion Products, CSA-CP) containing electrochemical sensors used to measure the concentration of carbon monoxide (CO), hydrogen chloride (HCl), hydrogen cyanide (HCN), and oxygen (O2). The CO sensor in this device accounts for a well-known cross-sensitivity with hydrogen (H2), which is important, as ISS air can contain up to 100 ppm H2. Unfortunately, this current device is being discontinued, and due to space constraints, the new model cannot accommodate the size of the current CO sensor. Therefore, a trade study was conducted in order to determine which CO sensors on the market were available with compensation for H2, and which instruments used these sensors, while also measuring HCN, O2, and carbon dioxide (CO2). The addition of CO2 to the device is helpful, as current monitoring of this gas requires a second hand-held monitor. By providing a device that will monitor both combustion products and CO2, volume and up-mass can be reduced as these monitors are delivered to ISS

    Tracking the Orbital and Super-orbital Periods of SMC X-1

    Full text link
    The High Mass X-ray Binary (HMXB) SMC X-1 demonstrates an orbital variation of 3.89 days and a super-orbital variation with an average length of 55 days. As we show here, however, the length of the super-orbital cycle varies by almost a factor of two, even across adjacent cycles. To study both the orbital and super-orbital variation we utilize lightcurves from the Rossi X-ray Timing Explorer All Sky Monitor (RXTE-ASM). We employ the orbital ephemeris from Wojdowski et al. (1998) to obtain the average orbital profile, and we show that this profile exhibits complex modulation during non-eclipse phases. Additionally, a very interesting ``bounceback'' in X-ray count rate is seen during mid-orbital eclipse phases, with a softening of the emission during these periods. This bounceback has not been previously identified in pointed observations. We then define a super-orbital ephemeris (the phase of the super-orbital cycle as a function of date) based on the ASM lightcurve and analyze the trend and distribution of super-orbital cycle lengths. SMC X-1 exhibits a bimodal distribution of these lengths, similar to what has been observed in other systems (e.g., Her X-1), but with more dramatic changes in cycle length. There is some hint, but not conclusive evidence, for a dependence of the super-orbital cycle length upon the underlying orbital period, as has been observed previously for Her X-1 and Cyg X-2. Using our super-orbital ephemeris we are also able to create an average super-orbital profile over the 71 observed cycles, for which we witness overall hardening of the spectrum during low count rate times. We combine the orbital and super-orbital ephemerides to study the correlation between the orbital and super-orbital variations in the system.Comment: 10 pages, using emulateapj style. To be published in the Astrophysical Journa

    Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    Get PDF
    Using Suzaku and the Rossi X-ray Timing Explorer, we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard low states. Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the focused wind from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating. These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c^2. All three models also agree that the known spectral break at 10\,keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, {thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c^2.Comment: 22 pages, 16 figures. Uses emulateapj style. Final three tables inserted as a figure to avoid issues with astro-ph's version of latex mangling the use of lscape. To be published in the Astrophysical Journal, January, 201

    Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC): User Guide

    Get PDF
    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC/ GMC is a versatile form of research software that "drives" the double or triply periodic micromechanics constitutive models based upon GMC. MAC/GMC enhances the basic capabilities of GMC by providing a modular framework wherein 1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, 2) different integration algorithms may be selected, 3) a variety of material constitutive models (both deformation and life) may be utilized and/or implemented, and 4) a variety of fiber architectures (both unidirectional, laminate and woven) may be easily accessed through their corresponding representative volume elements contained within the supplied library of RVEs or input directly by the user, and 5) graphical post processing of the macro and/or micro field quantities is made available

    Photometric analysis of a space shuttle water venting

    Get PDF
    Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment

    Measurements of momentum and heat transfer across the air–sea interface

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1054–1072, doi:10.1175/2007JPO3739.1.This study makes direct measurements of turbulent fluxes in the mixed layer in order to close heat and momentum budgets across the air–sea interface and to assess the ability of rigid-boundary turbulence models to predict mean vertical gradients beneath the ocean’s wavy surface. Observations were made at 20 Hz at nominal depths of 2.2 and 1.7 m in 16 m of water. A new method is developed to estimate the fluxes and the length scales of dominant flux-carrying eddies from cospectra at frequencies below the wave band. The results are compared to independent estimates of those quantities, with good agreement between the two sets of estimates. The observed temperature gradients were smaller than predicted by standard rigid-boundary closure models, consistent with the suggestion that wave breaking and Langmuir circulation increase turbulent diffusivity in the upper ocean. Similarly, the Monin–Obukhov stability function ϕh was smaller in the authors’ measurements than the stability functions used in rigid-boundary applications of the Monin–Obukhov similarity theory. The dominant horizontal length scales of flux-carrying turbulent eddies were found to be consistent with observations in the bottom boundary layer of the atmosphere and from laboratory experiments in three ways: 1) in statically unstable conditions, the eddy sizes scaled linearly with distance to the boundary; 2) in statically stable conditions, length scales decreased with increasing downward buoyancy flux; and 3) downwind length scales were larger than crosswind length scales.We are grateful to the Office of Naval Research for funding this work as a part of CBLAST-Low
    • …
    corecore