1,673 research outputs found
Erratum: The Non-Coding RNA Journal Club: Highlights on Recent Papers-4. Non-Coding RNA 2016, 2, 9.
Please note that in the published editorial [1], affiliations 1, and 8 contained errors.[...]
Alterations of immune response of non-small lung cancer with azacytidine
Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade
Magnetic state of plutonium ion in metallic Pu and its compounds
By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and
electronic structure have been investigated for plutonium in \delta and \alpha
phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For
metallic plutonium in both phases in agreement with experiment a nonmagnetic
ground state was found with Pu ions in f^6 configuration with zero values of
spin, orbital, and total moments. This result is determined by a strong
spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced
splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a
pseudogap between them, so that f^{5/2} subshell is already nearly completely
filled with six electrons before Coulomb correlation effects were taken into
account. The competition between spin-orbit coupling and exchange (Hund)
interaction (favoring magnetic ground state) in 5f shell is so delicately
balanced, that a small increase (less than 15%) of exchange interaction
parameter value from J_H=0.48eV obtained in constrain LDA calculation would
result in a magnetic ground state with nonzero spin and orbital moment values.
For Pu compounds investigated in the present work, predominantly f^6
configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and
PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic
moment values. Whereas pure jj coupling scheme was found to be valid for
metallic plutonium, intermediate coupling scheme is needed to describe 5f shell
in Pu compounds. The results of our calculations show that both spin-orbit
coupling and exchange interaction terms in the Hamiltonian must be treated in a
general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape
Increased circulating ANG II and TNF-α represents important risk factors in obese Saudi adults with hypertension irrespective of diabetic status and BMI
Central adiposity is a significant determinant of obesity-related hypertension risk, which may arise due to the pathogenic inflammatory nature of the abdominal fat depot. However, the influence of pro-inflammatory adipokines on blood pressure in the obese hypertensive phenotype has not been well established in Saudi subjects. As such, our study investigated whether inflammatory factors may represent useful biomarkers to delineate hypertension risk in a Saudi cohort with and without hypertension and/or diabetes mellitus type 2 (DMT2). Subjects were subdivided into four groups: healthy lean controls (age: 47.9±5.1 yr; BMI: 22.9±2.1 Kg/m2), non-hypertensive obese (age: 46.1±5.0 yr; BMI: 33.7±4.2 Kg/m2), hypertensive obese (age: 48.6±6.1 yr; BMI: 36.5±7.7 Kg/m2) and hypertensive obese with DMT2 (age: 50.8±6.0 yr; BMI: 35.3±6.7 Kg/m2). Anthropometric data were collected from all subjects and fasting blood samples were utilized for biochemical analysis. Serum angiotensin II (ANG II) levels were elevated in hypertensive obese (p<0.05) and hypertensive obese with DMT2 (p<0.001) compared with normotensive controls. Systolic blood pressure was positively associated with BMI (p<0.001), glucose (p<0.001), insulin (p<0.05), HOMA-IR (p<0.001), leptin (p<0.01), TNF-α (p<0.001) and ANG II (p<0.05). Associations between ANG II and TNF-α with systolic blood pressure remained significant after controlling for BMI. Additionally CRP (p<0.05), leptin (p<0.001) and leptin/adiponectin ratio (p<0.001) were also significantly associated with the hypertension phenotype. In conclusion our data suggests that circulating pro-inflammatory adipokines, particularly ANG II and, TNF-α, represent important factors associated with a hypertension phenotype and may directly contribute to predicting and exacerbating hypertension risk
The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer
Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al
Self-organization with traveling waves: A case for a convective torus
A traveling wave of BaSO4 in the chlorite-thiourea reaction has shown concentric precipitation patterns upon being triggered by the autocatalyst HOCl. The precipitation patterns show circular rings of alternate null and full precipitation regions. This self-organization appears to be the result of the formation of a convective torus. The formation of the convective torus can be described as a Benard-Marangoni instability with lateral heating
The Southeast Energy Efficiency Alliance Green City Program: Assisting Cities and Municipalities to Engage Customers and Develop Effective Energy Efficiency Programs
The Southeastern region of the United States is at a critical turning point in its development. With twice the population growth of the country overall, the demand for energy is projected to increase by 30% in the next 20 years, with much of the electricity load growth to be met by new baseload plants. This presentation describes the work of a competitive City model for energy efficiency programs in the Southeast.Southeast Energy Efficiency Allianc
Contribution of primary motor cortex to compensatory balance reactions
<p>Abstract</p> <p>Background</p> <p>Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.</p> <p>Results</p> <p>Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.</p> <p>Conclusions</p> <p>Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.</p
Preliminary analysis of immune activation in early onset type 2 diabetes
Introduction. First Nations and other Aboriginal children are disproportionately affected by cardiometabolic diseases, including type 2 diabetes (T2D). In T2D, the disruption of insulin signalling can be driven by pro-inflammatory immunity. Pro-inflammatory responses can be fueled by toll-like receptors (TLR) on immune cells such as peripheral blood mononuclear cells (PBMC, a white blood cell population). TLR4 can bind to lipids from bacteria and food sources activating PBMC to produce cytokines tumour necrosis factor (TNF)-α and interleukin (IL)-1β. These cytokines can interfere with insulin signalling. Here, we seek to understand how TLR4 activation may be involved in early onset T2D. We hypothesized that immune cells from youth with T2D (n=8) would be more reactive upon TLR4 stimulation relative to cells from age and body mass index (BMI)-matched controls without T2D (n=8). Methods. Serum samples were assayed for adipokines (adiponectin and leptin), as well as cytokines. Freshly isolated PBMC were examined for immune reactivity upon culture with TLR4 ligands bacterial lipopolysaccharide (LPS, 2 and 0.2 ng/ml) and the fatty acid palmitate (200 µM). Culture supernatants were evaluated for the amount of TNF-α and IL-1β produced by PBMC. Results. Youth with T2D displayed lower median serum adiponectin levels compared to controls (395 vs. 904 ng/ml, p<0.05). PBMC isolated from youth with and without T2D produced similar levels of TNF-α and IL-1β after exposure to the higher LPS concentration. However, at the low LPS dose the T2D cohort exhibited enhanced IL-1β synthesis relative to the control cohort. Additionally, exposure to palmitate resulted in greater IL-1β synthesis in PBMCs isolated from youth with T2D versus controls (p<0.05). These differences in cytokine production corresponded to greater monocyte activation in the T2D cohort. Conclusion. These preliminary results suggest that cellular immune responses are exaggerated in T2D, particularly with respect to IL-1β activity. These studies aim to improve the understanding of the biology behind early onset T2D and its vascular complications that burden First Nations people
Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.
Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.This work was supported by the Medical Research Council (UK). S.F. was supported by a Herchel Smith Research Studentship and K.F. by an MRC Career Development Award. E.R.M is supported by the ERC Advanced Researcher award 323004–ONCOTREAT. P.H.M. is supported by Senior Investigator Awards from the Wellcome Trust and NIHR. The Cambridge Human Research Tissue Bank and A.W. are supported by the NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing at http://dx.doi.org/10.1038/nature19353
- …
