1,559 research outputs found
Recommended from our members
A reciprocity for symmetric algebras
The aim of this note is to show, that the reciprocity property of group algebras in [5, (11.5)] can be deduced from formal properties of symmetric algebras, as exposed in [1], for instance
Investigating the Relation between Galaxy Properties and the Gaussianity of the Velocity Distribution of Groups and Clusters
We investigate the dependence of stellar population properties of galaxies on
group dynamical stage for a subsample of Yang catalog. We classify groups
according to their galaxy velocity distribution into Gaussian (G) and
Non-Gaussian (NG). Using two totally independent approaches we have shown that
our measurement of Gaussianity is robust and reliable. Our sample covers Yang's
groups in the redshift range 0.03 z 0.1 having mass
10. The new method, Hellinger Distance (HD), to determine
whether a group has a velocity distribution Gaussian or Non-Gaussian is very
effective in distinguishing between the two families. NG groups present halo
masses higher than the G ones, confirming previous findings. Examining the
Skewness and Kurtosis of the velocity distribution of G and NG groups, we find
that faint galaxies in NG groups are mainly infalling for the first time into
the groups. We show that considering only faint galaxies in the outskirts,
those in NG groups are older and more metal rich than the ones in G groups.
Also, examining the Projected Phase Space of cluster galaxies we see that
bright and faint galactic systems in G groups are in dynamical equilibrium
which does not seem to be the case in NG groups. These findings suggest that NG
systems have a higher infall rate, assembling more galaxies which experienced
preprocessing before entering the group.Comment: 55 pages, 5 Tables and 12 Figures. Accepted for publication in
Astronomical Journa
Localization Recall Precision (LRP): A New Performance Metric for Object Detection
Average precision (AP), the area under the recall-precision (RP) curve, is
the standard performance measure for object detection. Despite its wide
acceptance, it has a number of shortcomings, the most important of which are
(i) the inability to distinguish very different RP curves, and (ii) the lack of
directly measuring bounding box localization accuracy. In this paper, we
propose 'Localization Recall Precision (LRP) Error', a new metric which we
specifically designed for object detection. LRP Error is composed of three
components related to localization, false negative (FN) rate and false positive
(FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable
LRP error representing the best achievable configuration of the detector in
terms of recall-precision and the tightness of the boxes. In contrast to AP,
which considers precisions over the entire recall domain, Optimal LRP
determines the 'best' confidence score threshold for a class, which balances
the trade-off between localization and recall-precision. In our experiments, we
show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides
richer and more discriminative information than AP. We also demonstrate that
the best confidence score thresholds vary significantly among classes and
detectors. Moreover, we present LRP results of a simple online video object
detector which uses a SOTA still image object detector and show that the
class-specific optimized thresholds increase the accuracy against the common
approach of using a general threshold for all classes. At
https://github.com/cancam/LRP we provide the source code that can compute LRP
for the PASCAL VOC and MSCOCO datasets. Our source code can easily be adapted
to other datasets as well.Comment: to appear in ECCV 201
The Evolution of the Intracluster Medium Metallicity in Sunyaev-Zel'dovich-Selected Galaxy Clusters at 0 < z < 1.5
We present the results of an X-ray spectral analysis of 153 galaxy clusters
observed with the Chandra, XMM-Newton, and Suzaku space telescopes. These
clusters, which span 0 < z < 1.5, were drawn from a larger, mass-selected
sample of galaxy clusters discovered in the 2500 square degree South Pole
Telescope Sunyaev Zel'dovich (SPT-SZ) survey. With a total combined exposure
time of 9.1 Ms, these data yield the strongest constraints to date on the
evolution of the metal content of the intracluster medium (ICM). We find no
evidence for strong evolution in the global (r<R500) ICM metallicity (dZ/dz =
-0.06 +/- 0.04 Zsun), with a mean value at z=0.6 of = 0.23 +/- 0.01 Zsun
and a scatter of 0.08 +/- 0.01 Zsun. These results imply that >60% of the
metals in the ICM were already in place at z=1 (at 95% confidence), consistent
with the picture of an early (z>1) enrichment. We find, in agreement with
previous works, a significantly higher mean value for the metallicity in the
centers of cool core clusters versus non-cool core clusters. We find weak
evidence for evolution in the central metallicity of cool core clusters (dZ/dz
= -0.21 +/- 0.11 Zsun), which is sufficient to account for this enhanced
central metallicity over the past ~10 Gyr. We find no evidence for metallicity
evolution outside of the core (dZ/dz = -0.03 +/- 0.06 Zsun), and no significant
difference in the core-excised metallicity between cool core and non-cool core
clusters. This suggests that strong radio-mode AGN feedback does not
significantly alter the distribution of metals at r>0.15R500. Given the
limitations of current-generation X-ray telescopes in constraining the ICM
metallicity at z>1, significant improvements on this work will likely require
next-generation X-ray missions.Comment: 11 pages, 8 figures, 2 tables. Submitted to ApJ. Comments welcome
Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply
We present a multi-wavelength study of 90 brightest cluster galaxies (BCGs)
in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by
the South Pole Telescope, utilizing data from various ground- and space-based
facilities. We infer the star formation rate (SFR) for the BCG in each cluster,
based on the UV and IR continuum luminosity, as well as the [O II] emission
line luminosity in cases where spectroscopy is available, finding 7 systems
with SFR > 100 Msun/yr. We find that the BCG SFR exceeds 10 Msun/yr in 31 of 90
(34%) cases at 0.25 < z < 1.25, compared to ~1-5% at z ~ 0 from the literature.
At z > 1, this fraction increases to 92(+6)(-31)%, implying a steady decrease
in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific star
formation rate in BCGs is declining more slowly with time than for field or
cluster galaxies, most likely due to the replenishing fuel from the cooling ICM
in relaxed, cool core clusters. At z > 0.6, the correlation between cluster
central entropy and BCG star formation - which is well established at z ~ 0 -
is not present. Instead, we find that the most star-forming BCGs at high-z are
found in the cores of dynamically unrelaxed clusters. We investigate the
rest-frame near-UV morphology of a subsample of the most star-forming BCGs
using data from the Hubble Space Telescope, finding complex, highly asymmetric
UV morphologies on scales as large as ~50-60 kpc. The high fraction of
star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times
suggests that the dominant mode of fueling star formation in BCGs may have
recently transitioned from galaxy-galaxy interactions to ICM cooling.Comment: 20 pages, 10 figures. Submitted for publication in ApJ. Comments
welcom
Optical followup of galaxy clusters detected by the South Pole Telescope
The South Pole Telescope (SPT) is a 10 meter telescope operating at mm
wavelengths. It has recently completed a three-band survey covering 2500 sq.
degrees. One of the survey's main goals is to detect galaxy clusters using
Sunyaev-Zeldovich effect and use these clusters for a variety of cosmological
and astrophysical studies such as the dark energy equation of state, the
primordial non-gaussianity and the evolution of galaxy populations. Since 2005,
we have been engaged in a comprehensive optical and near-infrared followup
program (at wavelengths between 0.4 and 5 {\mu}m) to image high-significance
SPT clusters, to measure their photometric redshifts, and to estimate the
contamination rate of the candidate lists. These clusters are then used for
various cosmological and astrophysical studies.Comment: For TAUP 2011 proceeding
- …
