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A RECIPROCITY FOR SYMMETRIC ALGEBRAS

Markus Linckelmann, Bernard Stalder

March 2001

Abstract. The aim of this note is to show, that the reciprocity property of group
algebras in [5, (11.5)] can be deduced from formal properties of symmetric algebras,

as exposed in [1], for instance.

Let O be a commutative ring. By an O-algebra we always mean a unitary associa-
tive algebra over O. Given an O-algebra A, we denote by A0 the opposite algebra of
A. An A-module is a unitary left module, unless stated otherwise. A right A-module
can be considered as a left A0-module. If A, B are O-algebras, we mean by an A-
B-bimodule always a bimodule whose left and right O-module structure coincide; in
other words, any A-B-bimodule can be regarded as A ⊗O B0-module. For an A-A-
bimodule M we set MA = {m ∈ M | am = ma for all a ∈ A}. In particular, AA =
Z(A), the center of A. If A, B, C are O-algebras, M is an A-B-bimodule and N is an
A-C-bimodule, we consider the space HomA(M,N) of left A-module homomorphisms
from M to N as B-C-bimodule via (b.ϕ.c)(m) = ϕ(mb)c. Similarly, if furthermore N ′

is a C-B-bimodule, we consider the space HomB0(M,N ′) of right B-module homo-
morphisms from M to N ′ as C-A-bimodule via (c.ψ.a)(m) = cψ(am). In particular,
the O-dual M∗ = HomO(M,O) becomes a B-A-bimodule via (b.τ.a)(m) = τ(amb).
Here a ∈ A, b ∈ B, c ∈ C, m ∈ M , ϕ ∈ HomA(M,N), ψ ∈ HomB0(M,N ′) and
τ ∈M∗.

An O-algebraA is called symmetric ifA is finitely generated projective as O-module
and if A is isomorphic to its O-dual A∗ = HomO(A,O) as A-A-bimodule. The image
s ∈ A∗ of 1A under any A-A-isomorphism Φ : A ∼= A∗ fulfills Φ(a) = a.s = s.a for
all a ∈ A; that is, s is symmetric and the map a 7→ a.s is a bimodule isomorphism
A ∼= A∗. Any such linear form is called a symmetrising form of A. The choice of a
symmetrising form on A is thus equivalent to the choice of a bimodule isomorphism
A ∼= A∗.

Theorem 1. Let A, B be symmetric O-algebras and let M , N be A-B-bimodules
which are finitely generated projective as left and right modules. We have a bifunctorial
O-linear isomorphism

(M∗ ⊗
A
N)B ∼= (N ⊗

B
M∗)A

which is canonically determined by the choice of symmetrising forms of A and B.

Proof. Let s ∈ A∗ and t ∈ B∗ be symmetrising forms on A and B, respectively. It
is well-known (see [1] or also the appendix in [3]) that there is an isomorphism of
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B-A-bimodules
{

HomA(M,A) ∼= M∗

f 7→ s ◦ f

which is functorial in M . Moreover, since M and N are finitely generated projective
as left and right modules, we have an isomorphism of B-B-bimodules

{

HomA(M,A) ⊗
A
N ∼= HomA(M,N)

f ⊗ n 7→ (m 7→ f(m)n)

which is functorial in both M and N . Taking B-fixpoints yields (M∗ ⊗
A
N)B ∼=

(HomA(M,A) ⊗
A
N)B ∼= (HomA(M,N))B = HomA⊗B0(M,N). Similarly, there is an

isomorphism of B-A-bimodules
{

HomB0(M,B) ∼= M∗

g 7→ t ◦ g

and we have an isomorphism of A-A-bimodules
{

N ⊗
B

HomB0(M,B) ∼= HomB0(M,N)

n⊗ g 7→ (m 7→ ng(m))
.

As before, taking A-fixpoints yields (N ⊗
B
M∗)A ∼= (N ⊗

B
HomB0(M,B))A ∼=

(HomB0(M,N))A = HomA⊗B0(M,N). �

Remark. The proof of Theorem 1 shows, that the two expressions in the statement
of Theorem 1 are isomorphic to HomA⊗B0(M,N). In particular, for M = N , this
induces algebra structures on (M∗ ⊗

A
M)B and (M ⊗

B
M∗)A.

Taking derived functors of the fixpoint functors in Theorem 1 yields the following
consequence on Hochschild cohomology.

Corollary. With the notation and assumptions of Theorem 1, we have an isomor-
phism of graded O-modules HH∗(B,M∗ ⊗

A
N) ∼= HH∗(A,N ⊗

B
M∗).

Proof. Let P be a projective resolution of M as A-B-bimodule. Then P ∗ =
HomO(P,O) is an O-injective resolution of M∗. Thus N ⊗

B
P ∗ and P ∗ ⊗

A
N are

O-injective resolutions of N ⊗
B
M∗ and M∗ ⊗

A
N , respectively. Using Theorem 1,

we have isomorphisms of cochain complexes HomB⊗
O

B0(B,P ∗ ⊗
A
N) ∼= (P ∗ ⊗

A
N)B ∼=

(N ⊗
B
P ∗)A ∼= HomA⊗

O
A0(A,N ⊗

B
P ∗). Taking cohomology yields the statement. �

Let A be an O-algebra. Following the terminology in [2], [3] (which generalises
[4]), an interior A-algebra is an O-algebra B endowed with a unitary algebra homo-
morphism σ : A → B. If A, B are O-algebras, C is an interior B-algebra and M an
A-B-bimodule, we set IndM (C) = EndC0(M ⊗

B
C), considered as interior A-algebra

via the homomorphism A → IndM (C) sending a to the C0-endomorphism given by
left multiplication with a on M ⊗

B
C.
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Theorem 2. Let A, B be symmetric O-algebras and let M be an A-B-bimodule
which is finitely generated projective as left and right module. There is a canonical
anti-isomorphism of O-algebras

(IndM (B))A ∼= (IndM∗(A))B .

Proof. We have IndM (B) = EndB0(M) and IndM∗(A) = EndA0(M∗). Since taking
O-duality is a contravariant functor, this algebra is isomorphic to EndA(M)0. Taking
fixpoints completes the proof. �

The group algebra OG of a finite group G is a symmetric algebra. More precisely,
OG has a canonical symmetrising form, namely the form s : OG → O mapping a
group element g ∈ G to zero if g 6= 1 and to 1 if g = 1. Following the terminology of
Puig [4], an interior G-algebra is an O-algebra endowed with a group homomorphism
σ : G → A×. Such a group homomorphism extends uniquely to an O-algebra homo-
morphism OG → A, and thus A becomes an interior OG-algebra (and vice versa).

If H is a subgroup of G and B an interior H-algebra, the induced algebra IndG
H(B)

defined in [4] is the O-module OG ⊗
OH

B ⊗
OH

OG endowed with the multiplication

(x ⊗ b ⊗ y)(x′ ⊗ b′ ⊗ y) = (x ⊗ byx′b′ ⊗ y′) provided that yx′ ∈ H, and 0 otherwise,

where x, y, x′, y′ ∈ G and b, b′ ∈ B. The algebra IndG
H(B) is viewed as interior G-

algebra with the structural homomorphism mapping x ∈ G to
∑

y∈[G/H]

xy⊗ 1B ⊗ y−1.

For B = OH, we have the obvious identification IndG
H(OH) = OG ⊗

OH
OG, with

multiplication given by (x ⊗ y)(x′ ⊗ y′) = x ⊗ yx′y′ if yx′ ∈ H and 0 otherwise,
where x, y, x′, y′ ∈ G. The previous notion of algebra induction is consistent with this
concept:

Lemma. Let G be a finite group, H a subgroup of G and let B be an interior H-
algebra. Set M = OGH . There is an isomorphism of O-algebras

{

IndG
H(B) ∼= IndM (B)

(x⊗ b⊗ y) 7→ (z ⊗ c 7→ x⊗ byzc if yz ∈ H and 0 otherwise) ,

where x, y, z ∈ G and b, c ∈ B.

Proof. Straightforward verification. �

Theorem 3. (Stalder [5]) Let G be a finite group, let H,K be subgroups of G. Con-
sider OG as OH-OK-bimodule via multiplication in OG. Then there is an isomor-
phism of O-algebras







(IndG
H(OH))K ∼

−→ (IndG
K(OK))H

∑

k∈[K/K(x⊗y)]

kx⊗ yk−1 7−→
∑

h∈[H/H(x−1⊗y−1)]

hx−1 ⊗ y−1h−1,

where K(x⊗y) is the stabilizer in K of x ⊗ y ∈ IndG
H(OH) under the action of K

and H(x−1⊗y−1) is the stabilizer in H of x−1 ⊗ y−1 ∈ IndG
K(OK) under the action of

H.
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There are (at least) three ways to go about the proof of Theorem 3: by explicit
verification or by interpreting Theorem 3 as special case of either Theorem 1 or
Theorem 2. We sketch the three different proofs.

Proof 1 of Theorem 3. The image of the set G × G in IndG
H(OH) = OG ⊗

OH
OG

is an O-basis which is permuted under the action of K by conjugation. Thus the
subalgebra (IndG

H(OH))K of K-stable elements has as O-basis the set of relative

traces TrK
K(x⊗y)

(x⊗ y), where x, y ∈ G. If x, x′, y, y′ ∈ G and k ∈ K such that

kx⊗ yk−1 = x′ ⊗ y′

in IndG
H(OH), there is a (necessarily unique) h ∈ H such that kx = x′h−1 and

yk−1 = hy′, which in turn is equivalent to the equality

hx−1 ⊗ y−1h−1 = (x′)−1 ⊗ (y′)−1

in IndG
K(OK). Thus the map x⊗ y 7→ x−1 ⊗ y−1 induces a bijection between the sets

of K-orbits and of H-orbits of the images of G × G in IndG
H(OH) and IndG

K(OK),
respectively. In particular, with the notation above, we have k ∈ K(x⊗y) if and only
if h ∈ H(x−1⊗y−1), and the correspondence k 7→ h induces a group isomorphism
K(x⊗y)

∼= H(x−1⊗y−1). From this follows that the map given in Theorem 3 is an
O-linear isomorphism. It remains to verify that this is an algebra homomorphism.
In IndG

H(OH), multiplication is given by (x ⊗ y)(z ⊗ t) = x ⊗ yzt, if yz ∈ H and

0, otherwise, where x, y, z, t ∈ G. If yz ∈ H, then in IndG
K(OK), the elements

(yz)z−1 ⊗ t−1(yz)−1 and z−1 ⊗ t−1 are in the same H-orbit, and the multiplication

in IndG
K(OK) yields (x−1 ⊗ y−1)((yz)z−1 ⊗ t−1(yz)−1) = x−1 ⊗ t−1z−1y−1, and this

corresponds precisely to the bijection between the sets of K-orbits and H-orbits of
the images of the set G×G in IndG

K(OK) and IndG
H(OH), respectively. �

Proof 2 of Theorem 3. We are going to apply Theorem 1 to the particular case where
A = OH, B = OK, M = N = OG viewed as A-B-bimodule (through the inclusions
H ⊆ G, K ⊆ G). This yields an O-linear isomorphism

((OG)∗ ⊗
OH

OG)K ∼= (OG ⊗
OK

(OG)∗)H .

Composing this with the canonical isomorphism (OG)∗ ∼= OG mapping f ∈ (OG)∗

to
∑

x∈G

f(x−1)x yields the isomorphism in Theorem 3. �

Proof 3 of Theorem 3. Applying Theorem 2 and the above Lemma to A = OK,
B = OH andM = OG as A-B-bimodule yields an anti-isomorphism (IndG

H(OH))K ∼=
(IndG

K(OK))H . The map sending x ⊗ y to y−1 ⊗ x−1 is an anti-automorphism of

IndG
H(OH) which induces an anti-automorphism of (IndG

H(OH))K . Composing both
maps yields again the isomorphism in Theorem 3. �

Remark. The proof 3 of Theorem 3 is essentially the proof given in [5, §11].



A RECIPROCITY FOR SYMMETRIC ALGEBRAS 5

References
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Université de Lausanne

Institut de Mathématiques
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