127 research outputs found

    Therapien zum Zellersatz mit adulten Stammzelltypen

    Get PDF
    In Kap. 13 „Zelltypen aus menschlichen pluripotenten Zellen und deren Anwendung in Zelltherapien“ werden Zelltherapien, die auf pluripotenten Stammzellen beruhen, dargestellt. Pluripotente Stammzellen sind entweder nur sehr vorübergehend im menschlichen Embryo – menschliche embryonale Stammzellen (ES-Zellen) – vorhanden oder können durch Reprogrammierung von Körperzellen zu menschlichen induzierten Stammzellen (hiPS-Zellen) gewonnen werden. Gewebe und Organe des erwachsenen (adulten) Organismus haben allerdings spezifische Stammzellen, die zur Aufrechterhaltung (Homöostase) und zur Reparatur nach Verletzungen bzw. Schädigungen von Geweben und Organen benötigt werden (De Luca et al. 2019), daher die Bezeichnung adulte oder gewebespezifische Stammzellen. Der historische Nachweis adulter Stammzellen, d. h. Zellen, die sowohl Kopien von sich selbst herstellen können als auch in andere Zelltypen differenzieren können, ist den kanadischen Forschern James Till and Ernest McCullough in den 1960er-Jahren mit Blutstammzellen in der Maus gelungen. Sie konnten zeigen, dass Blutstammzellen einer Spendermaus das gesamte Blutsystem in einer Empfängermaus, die kein eigenes Blutsystem mehr besitzt, ersetzen kann. Bereits 1957 konnte Edward Donnall Thomas bei einem Leukämiepatienten zeigen, dass Knochenmarkzellen von dessen eineiigem Bruder nach einer Bestrahlung das Blutsystem neu bilden konnten. Inzwischen ist dieser Mechanismus für Gewebestammzellen in einer Vielzahl von Organen gezeigt worden (Lanza und Atala 2014). Blutstammzellen sind mittlerweile eine Standardtherapie in der klinischen Anwendung (siehe Kolb/Fehse, Kap. 11). Auch in anderen Bereichen werden vermehrt Gewebestammzellen eingesetzt bzw. Therapien in klinischen Studien entwickelt. In diesem Kapitel werden neuartige Anwendungen von hämatopoetischen Stammzellen bei Bluterkrankungen aufgrund von Genmutationen, Sichelzellanämie und β-Thalassämie und bei Autoimmunerkrankungen vorgestellt. Es wird auf die Anwendung von mesenchymalen stromalen Zellen bei Transplantat-gegen-Wirt-Erkrankungen (Graft-versus-Host-Disease), bei der Behandlung von chronischen Wunden (chronisch-venöse Ulzera) und bei Morbus Crohn eingegangen. Weiterhin wird der Einsatz von Hautersatz basierend auf Hautstammzellen und der Ersatz der Hornhaut bei Augenverletzungen diskutiert sowie die Anwendung von genetisch veränderten Muskelstammzellen, sog. Satellitenzellen, zur Behandlung von Muskelerkrankungen und -dystrophien dargestellt (De Luca et al. 2019). Darüber hinaus werden die Möglichkeiten der zukünftigen Behandlung mit extrazellulären Vesikeln bzw. Exosomen von stromalen Zellen beschrieben

    Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells

    Get PDF
    Syncytial skeletal muscle cells contain hundreds of nuclei in a shared cytoplasm. We investigated nuclear heterogeneity and transcriptional dynamics in the uninjured and regenerating muscle using single-nucleus RNA-sequencing (snRNAseq) of isolated nuclei from muscle fibers. This revealed distinct nuclear subtypes unrelated to fiber type diversity, previously unknown subtypes as well as the expected ones at the neuromuscular and myotendinous junctions. In fibers of the Mdx dystrophy mouse model, distinct subtypes emerged, among them nuclei expressing a repair signature that were also abundant in the muscle of dystrophy patients, and a nuclear population associated with necrotic fibers. Finally, modifications of our approach revealed the compartmentalization in the rare and specialized muscle spindle. Our data identifies nuclear compartments of the myofiber and defines a molecular roadmap for their functional analyses; the data can be freely explored on the MyoExplorer server (https://shiny.mdc-berlin.de/MyoExplorer/)

    Exercise blood-drop metabolic profiling links metabolism with perceived exertion

    Get PDF
    BACKGROUND: Assessing detailed metabolism in exercising persons minute-to-minute has not been possible. We developed a “drop-of-blood” platform to fulfill that need. Our study aimed not only to demonstrate the utility of our methodology, but also to give insights into unknown mechanisms and new directions. METHODS: We developed a platform, based on gas chromatography and mass spectrometry, to assess metabolism from a blood-drop. We first observed a single volunteer who ran 13 km in 60 min. We particularly monitored relative perceived exertion (RPE). We observed that 2,3-bisphosphoglycerate peaked at RPE in this subject. We next expanded these findings to women and men volunteers who performed an RPE-based exercise protocol to RPE at Fi O 2 20.9% or Fi O 2 14.5% in random order. RESULTS: At 6 km, our subject reached his maximum relative perceived exertion (RPE); however, he continued running, felt better, and finished his run. Lactate levels had stably increased by 2 km, ketoacids increased gradually until the run’s end, while the hypoxia marker, 2,3 bisphosphoglycerate, peaked at maximum relative perceived exertion. In our normal volunteers, the changes in lactate, pyruvate, ß hydroxybutyrate and a hydroxybutyrate were not identical, but similar to our model proband runner. CONCLUSION: Glucose availability was not the limiting factor, as glucose availability increased towards exercise end in highly exerted subjects. Instead, the tricarboxylic acid?oxphos pathway, lactate clearance, and thus and the oxidative capacity appeared to be the defining elements in confronting maximal exertion. These ideas must be tested further in more definitive studies. Our preliminary work suggests that our single-drop methodology could be of great utility in studying exercise physiology

    Delay in diagnosis of muscle disorders depends on the subspecialty of the initially consulted physician

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New therapeutic strategies in muscular dystrophies will make a difference in prognosis only if they are begun early in the course of the disease. Therefore, we investigated factors that influence the time to diagnosis in muscle dystrophy patients.</p> <p>Methods</p> <p>A sample of 101 patients (mean age 49 years; range 19-80; 44% women) with diagnosed muscle dystrophies from neurological practices and the neuromuscular specialty clinic in Berlin, Germany, was invited to participate. Time from first consultation to diagnosis, subspecialty of physician, and sociodemographic data were assessed with self-report questionnaires. The association between time to diagnosis and potential predictors (subspecialty of initially consulted physician, diagnoses, gender, and age at onset) was modeled with linear regression analysis.</p> <p>Results</p> <p>The mean time span between first health-care contact and diagnosis was 4.3 years (median 1). The diagnostic delay was significantly longer if patients were initially seen by a non-neurological specialist compared to a general practitioner (5.2 vs. 3.5 years, p = 0.047). Other factors that were independently associated with diagnostic delay were female gender and inherited muscle disease.</p> <p>Conclusion</p> <p>Action to improve clinical awareness of muscle diseases in non-neurological specialists is needed.</p

    Disintegration of the NuRD complex in primary human muscle stem cells in critical illness myopathy

    Get PDF
    Critical illness myopathy (CIM) is an acquired, devastating, multifactorial muscle-wasting disease with incomplete recovery. The impact on hospital costs and permanent loss of quality of life is enormous. Incomplete recovery might imply that the function of muscle stem cells (MuSC) is impaired. We tested whether epigenetic alterations could be in part responsible. We characterized human muscle stem cells (MuSC) isolated from early CIM and analyzed epigenetic alterations (CIM n = 15, controls n = 21) by RNA-Seq, immunofluorescence, analysis of DNA repair, and ATAC-Seq. CIM-MuSC were transplanted into immunodeficient NOG mice to assess their regenerative potential. CIM-MuSC exhibited significant growth deficits, reduced ability to differentiate into myotubes, and impaired DNA repair. The chromatin structure was damaged, as characterized by alterations in mRNA of histone 1, depletion or dislocation of core proteins of nucleosome remodeling and deacetylase complex, and loosening of multiple nucleosome-spanning sites. Functionally, CIM-MuSC had a defect in building new muscle fibers. Further, MuSC obtained from the electrically stimulated muscle of CIM patients was very similar to control MuSC, indicating the impact of muscle contraction in the onset of CIM. CIM not only affects working skeletal muscle but has a lasting and severe epigenetic impact on MuSC

    Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-04-29, accepted 2021-06-16, epub 2021-08-02Publication status: PublishedThis article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies

    Assessing Dysferlinopathy Patients Over Three Years With a New Motor Scale

    Get PDF
    The Jain COS Consortium.[Objective] Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD.[Methods] We collected a longitudinal series of functional assessments from 187 patients with dysferlinopathy over 3 years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and nonambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories.[Results] The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3 to 8 years post symptom onset at baseline.[Interpretation] The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinical practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy. ANN NEUROL 2021;89:967–978The estimated US $4 million needed to fund this study was provided by the Jain Foundation. (www.jain-foundation.org) The Jain COS consortium would like to thank the study participants and their families for their invaluable contribution. The John Walton Centre Muscular Dystrophy Research Centre is part of the MRC Centre for Neuromuscular Diseases (Grant number MR/K000608/1).Peer reviewe

    Assessment of disease progression in dysferlinopathy: A 1-year cohort study

    Get PDF
    ObjectiveTo assess the ability of functional measures to detect disease progression in dysferlinopathy over 6 months and 1 year.MethodsOne hundred ninety-three patients with dysferlinopathy were recruited to the Jain Foundation's International Clinical Outcome Study for Dysferlinopathy. Baseline, 6-month, and 1-year assessments included adapted North Star Ambulatory Assessment (a-NSAA), Motor Function Measure (MFM-20), timed function tests, 6-minute walk test (6MWT), Brooke scale, Jebsen test, manual muscle testing, and hand-held dynamometry. Patients also completed the ACTIVLIM questionnaire. Change in each measure over 6 months and 1 year was calculated and compared between disease severity (ambulant [mild, moderate, or severe based on a-NSAA score] or nonambulant [unable to complete a 10-meter walk]) and clinical diagnosis.ResultsThe functional a-NSAA test was the most sensitive to deterioration for ambulant patients overall. The a-NSAA score was the most sensitive test in the mild and moderate groups, while the 6MWT was most sensitive in the severe group. The 10-meter walk test was the only test showing significant change across all ambulant severity groups. In nonambulant patients, the MFM domain 3, wrist flexion strength, and pinch grip were most sensitive. Progression rates did not differ by clinical diagnosis. Power calculations determined that 46 moderately affected patients are required to determine clinical effectiveness for a hypothetical 1-year clinical trial based on the a-NSAA as a clinical endpoint.ConclusionCertain functional outcome measures can detect changes over 6 months and 1 year in dysferlinopathy and potentially be useful in monitoring progression in clinical trials.ClinicalTrials.gov identifier:NCT01676077

    Assessment of disease progression in dysferlinopathy: A 1-year cohort study

    Get PDF
    ObjectiveTo assess the ability of functional measures to detect disease progression in dysferlinopathy over 6 months and 1 year.MethodsOne hundred ninety-three patients with dysferlinopathy were recruited to the Jain Foundation's International Clinical Outcome Study for Dysferlinopathy. Baseline, 6-month, and 1-year assessments included adapted North Star Ambulatory Assessment (a-NSAA), Motor Function Measure (MFM-20), timed function tests, 6-minute walk test (6MWT), Brooke scale, Jebsen test, manual muscle testing, and hand-held dynamometry. Patients also completed the ACTIVLIM questionnaire. Change in each measure over 6 months and 1 year was calculated and compared between disease severity (ambulant [mild, moderate, or severe based on a-NSAA score] or nonambulant [unable to complete a 10-meter walk]) and clinical diagnosis.ResultsThe functional a-NSAA test was the most sensitive to deterioration for ambulant patients overall. The a-NSAA score was the most sensitive test in the mild and moderate groups, while the 6MWT was most sensitive in the severe group. The 10-meter walk test was the only test showing significant change across all ambulant severity groups. In nonambulant patients, the MFM domain 3, wrist flexion strength, and pinch grip were most sensitive. Progression rates did not differ by clinical diagnosis. Power calculations determined that 46 moderately affected patients are required to determine clinical effectiveness for a hypothetical 1-year clinical trial based on the a-NSAA as a clinical endpoint.ConclusionCertain functional outcome measures can detect changes over 6 months and 1 year in dysferlinopathy and potentially be useful in monitoring progression in clinical trials.ClinicalTrials.gov identifier:NCT01676077
    • …
    corecore