334 research outputs found

    Surface Superconductivity in Niobium for Superconducting RF Cavities

    Full text link
    A systematic study is presented on the superconductivity (sc) parameters of the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz cavities for the linear collider project TESLA. Cylindrical Nb samples have been subjected to the same surface treatments that are applied to the TESLA cavities: buffered chemical polishing (BCP), electrolytic polishing (EP), low-temperature bakeout (LTB). The magnetization curves and the complex magnetic susceptibility have been measured over a wide range of temperatures and dc magnetic fields, and also for di erent frequencies of the applied ac magnetic field. The bulk superconductivity parameters such as the critical temperature Tc = 9.26 K and the upper critical field Bc2(0) = 410 mT are found to be in good agreement with previous data. Evidence for surface superconductivity at fields above Bc2 is found in all samples. The critical surface field exceeds the Ginzburg-Landau field Bc3 = 1.695Bc2 by about 10% in BCP-treated samples and increases even further if EP or LTB are applied. From the field dependence of the susceptibility and a power-law analysis of the complex ac conductivity and resistivity the existence of two different phases of surface superconductivity can be established which resemble the Meissner and Abrikosov phases in the bulk: (1) coherent surface superconductivity, allowing sc shielding currents flowing around the entire cylindrical sample, for external fields B in the range between Bc2 and Bcohc3, and (2) incoherent surface superconductivity with disconnected sc domains between Bcohc3 and Bc3. The coherent critical surface field separating the two phases is found to be Bcoh c3 = 0.81Bc3 for all samples. The exponents in the power law analysis are different for BCP and EP samples, pointing to different surface topologies.Comment: 15 pages, 21 figures, DESY-Report 2004-02

    Pairs Emission in a Uniform Background Field: an Algebraic Approach

    Full text link
    A fully algebraic general approach is developed to treat the pairs emission and absorption in the presence of some uniform external background field. In particular, it is shown that the pairs production and annihilation operators, together with the pairs number operator, do actually fulfill the SU(2) functional Lie algebra. As an example of application, the celebrated Schwinger formula is consistently and nicely recovered, within this novel approach, for a Dirac spinor field in the presence of a constant and homogeneous electric field in four spacetime dimensions.Comment: 26 pages, no figure

    Elastic-to-plastic crossover below the peak effect in the vortex solid of YBa2Cu3O7 single crystals

    Full text link
    We report on transport and ac susceptibility studies below the peak effect in twinned YBa2Cu3O7 single crystals. We find that disorder generated at the peak effect can be partially inhibited by forcing vortices to move with an ac driving current. The vortex system can be additionally ordered below a well-defined temperature where elastic interactions between vortices overcome pinning-generated stress and a plastic to elastic crossover seems to occur. The combined effect of these two processes results in vortex structures with different mobilities that give place to history effects.Comment: 4 pages, 4 figures. Published in PRB Rapid Comm., February 1, 200

    Dynamical Lorentz simmetry breaking from 3+1 Axion-Wess-Zumino model

    Get PDF
    We study the renormalizable abelian vector-field models in the presence of the Wess-Zumino interaction with the pseudoscalar matter. The renormalizability is achieved by supplementing the standard kinetic term of vector fields with higher derivatives. The appearance of fourth power of momentum in the vector-field propagator leads to the super-renormalizable theory in which the β\beta-function, the vector-field renormalization constant and the anomalous mass dimension are calculated exactly. It is shown that this model has the infrared stable fixed point and its low-energy limit is non-trivial. The modified effective potential for the pseudoscalar matter leads to the possible occurrence of dynamical breaking of the Lorentz symmetry. This phenomenon is related to the modification of Electrodynamics by means of the Chern-Simons (CS) interaction polarized along a constant CS vector. Its presence makes the vacuum optically active that has been recently estimated from astrophysical data. We examine two possibilities for the CS vector to be time-like or space-like, under the assumption that it originates from v.e.v. of some pseudoscalar matter and show that only the latter one is consistent in the framework of the AWZ model, because a time-like CS vector makes the vacuum unstable under pairs creation of tachyonic photon modes with the finite vacuum decay rate.Comment: 33 pages, no Figures, Plain TeX, submitted to Phys. Rev.

    Baryogenesis vs. proton stability in theories with extra dimensions

    Get PDF
    We propose a new scenario of baryogenesis in the context of theories with large extra dimensions. The baryon number is almost conserved at zero temperature by means of a localization mechanism recently analyzed by Arkani-Hamed and Schmaltz: leptons and quarks are located at two slightly displaced positions in the extra space, and this naturally suppresses the interactions which ``convert'' the latter in the former. We show that this is expected to be no longer true when finite temperature effects are taken into account. The whole scenario is first presented in its generality, without referring to the bulk geometry or to the specific mechanism which may generate the baryon asymmetry. As an example, we then focus on a baryogenesis model reminiscent of GUT baryogenesis. The Sakharov out of equilibrium condition is satisfied by assuming nonthermal production of the bosons that induce baryon number violation.Comment: 10 pages, 1 figur

    Super-acceleration on the Brane by Energy Flow from the Bulk

    Full text link
    We consider a brane cosmological model with energy exchange between brane and bulk. Parameterizing the energy exchange term by the scale factor and Hubble parameter, we are able to exactly solve the modified Friedmann equation on the brane. In this model, the equation of state for the effective dark energy has a transition behavior changing from wdeeff>1w_{de}^{eff}>-1 to wdeeff<1w_{de}^{eff}<-1, while the equation of state for the dark energy on the brane has w>1w>-1. Fitting data from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave Anisotropy Probe, our universe is predicted now in the state of super-acceleration with wde0eff=1.21w_{de0}^{eff}=-1.21.Comment: Revtex, 11 pages including 2 figures,v2: tpos fixed, references added, to appear in JCA

    Spin polarization of electrons by ultraintense lasers

    Get PDF
    Electrons in plasmas produced by next-generation ultraintense lasers (I>5×1022W/cm2) can be spin polarized to a high degree (10%-70%) by the laser pulses on a femtosecond time scale. This is due to electrons undergoing spin-flip transitions as they radiate γ-ray photons, preferentially spin polarizing in one direction. Spin polarization can modify the radiation reaction force on the electrons, which differs by up to 30% for opposite spin polarizations. Consequently, the polarization of the radiated γ-ray photons is also modified: the relative power radiated in the σ and π components increases and decreases by up to 30%, respectively, potentially reducing the rate of pair production in the plasma by up to 30%
    corecore