268 research outputs found
Intrabody-mediated diverting of HP1β to the cytoplasm induces co-aggregation of H3-H4 histones and lamin-B receptor
Diverting a protein from its intracellular location is a unique property of intrabodies. To interfere with the intracellular traffic of heterochromatin protein 1β (HP1β) in living cells, we have generated a cytoplasmic targeted anti-HP1β intrabody, specifically directed against the C-terminal portion of the molecule. HP1β is a conserved component of mouse and human constitutive heterochromatin involved in diverse nuclear functions including gene silencing, DNA repair and nuclear membrane assembly. We found that the anti-HP1β intrabody sequesters HP1β into cytoplasmic aggregates, inhibiting its traffic to the nucleus. Lamin B receptor (LBR) and a subset of core histones (H3/H4) are also specifically co-sequestered in the cytoplasm of anti-HP1β intrabody-expressing cells. Methylated histone H3 at K9 (Me9H3), a marker of constitutive heterochromatin, is not affected by the anti-HP1β intrabody expression. Hyper-acetylating conditions completely dislodge H3 from HP1β:LBR containing aggregates. The expression of anti-HP1β scFv fragments induces apoptosis, associated with an alteration of nuclear morphology. Both these phenotypes are specifically rescued either by overexpression of recombinant full length HP1β or by HP1β mutant containing the chromoshadow domain, but not by recombinant LBR protein. The HP1β-chromodomain mutant, on the other hand, does not rescue the phenotypes, but does compete with LBR for binding to HP1β. These findings provide new insights into the mode of action of cytoplasmic-targeted intrabodies and the interaction between HP1β and its binding partners involved in peripheral heterochromatin organisation
Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. © 2013 den Hartog et al
Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.
Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed
Patterns of alcohol drinking and its association with obesity: data from the third national health and nutrition examination survey, 1988–1994
BACKGROUND: Recent reports suggest that alcohol use may have a protective effect on obesity. This study explores association between obesity and alcohol consumption in the non-smoking U.S. adult population. METHODS: We analyzed data on a total of 8,236 respondents who participated in the Third National Health and Nutrition Examination Survey. Body mass index (weight-kg/height-m(2)) was derived from measured height and weight data and categorized into: normal weight, overweight, and obese. Alcohol consumption was measured using following measures: history of drinking, binge drinking, quantity of drinks/day, frequency of drinking, and average volume of drinks/week. RESULTS: Mean body mass index in this sample of non-smokers was 26.4 (95% CI: 26.1, 26.7). Approximately 46% of respondents were classified as current drinkers. Current drinkers had lower odds of obesity (Adjusted odds ratio = 0.73, 95% CI: 0.55, 0.97) as compared to non-drinkers. The odds of overweight and obesity were significantly greater among binge drinkers and those consuming four or more drinks/day. However, those who reported drinking one or two drinks per day had 0.46 (95% CI: 0.34, 0.62) and 0.59 (95% CI: 0.41, 0.86) times the odds of obesity, respectively. Similarly, the odds of obesity were significantly lower among those who reported drinking frequently and consuming less than five drinks per week. The association between overweight and other alcohol measures was less pronounced. CONCLUSION: The results suggest further exploring the possible role of moderate alcohol drinking in controlling body weight in adults
Functional conservation of the Drosophila hybrid incompatibility gene Lhr
<p>Abstract</p> <p>Background</p> <p>Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene <it>Lethal hybrid rescue </it>(<it>Lhr</it>) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between <it>Drosophila melanogaster </it>females and <it>D. simulans </it>males. Previous genetic analyses showed that hybrid lethality is caused by <it>D. simulans Lhr </it>but not by <it>D. melanogaster Lhr</it>, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene.</p> <p>Results</p> <p>Here we have examined the functional properties of <it>Lhr </it>orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in <it>D. melanogaster</it>/<it>D. simulans </it>hybrids. We find that these properties are conserved among most <it>Lhr </it>orthologs, including <it>Lhr </it>from <it>D. melanogaster</it>, <it>D. simulans </it>and the outgroup species <it>D. yakuba</it>.</p> <p>Conclusions</p> <p>We conclude that evolution of the hybrid lethality properties of <it>Lhr </it>between <it>D. melanogaster </it>and <it>D. simulans </it>did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin.</p
Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila
<p>Abstract</p> <p>Background</p> <p>Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in <it>Schizosaccharomyces pombe </it>have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on <it>Drosophila </it>heterochromatin structure.</p> <p>Results</p> <p>The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (<it>dcr-2, ago1, ago2, piwi, Lip [D], aub </it>and <it>hls</it>). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of <it>white-mottled4h </it>position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using <it>Drosophila </it>embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites.</p> <p>Conclusion</p> <p>Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in <it>Drosophila</it>. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in <it>Drosophila</it>.</p
Interaction of HP1 and Brg1/Brm with the Globular Domain of Histone H3 Is Required for HP1-Mediated Repression
The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling
Colonic stenting as bridge to surgery versus emergency surgery for management of acute left-sided malignant colonic obstruction: a multicenter randomized trial (Stent-in 2 study)
Background. Acute left-sided colonic obstruction is most often caused by malignancy and the surgical treatment is associated with a high mortality and morbidity rate. Moreover, these operated patients end up with a temporary or permanent stoma. Initial insertion of an enteral stent to decompress the obstructed colon, allowing for surgery to be performed electively, is gaining popularity. In uncontrolled studies stent placement before elective surgery has been suggested to decrease mortality, morbidity and number of colostomies. However stent perforation can lead to peritoneal tumor spill, changing a potentially curable disease in an incurable one. Therefore it is of paramount importance to compare the outcomes of colonic stenting followed by elective surgery with emergency surgery for the management of acute left-sided malignant colonic obstruction in a randomized multicenter fashion. Methods/design. Patients with acute left-sided malignant colonic obstruction eligible for this study will be randomized to either emergency surgery (current standard treatment) or colonic stenting as bridge to elective surgery. Outcome measurements are effectiveness and costs of both strategies. Effectiveness will be evaluated in terms of quality of life, morbidity and mortality. Quality of life will be measured with standardized questionnaires (EORTC QLQ-C30, EORTC QLQ-CR38, EQ-5D and EQ-VAS). Morbidity is defined as every event leading to hospital admission or prolonging hospital stay. Mortality will be analyzed as total mortality as well as procedure-related mortality. The total costs of treatment will be evaluated by counting volumes and calculating unit prices. Including 120 patients on a 1:1 basis will have 80% power to detect an effect size of 0.5 on the EORTC QLQ-C30 global health scale, using a two group t-test with a 0.05 two-sided significance level. Differences in quality of life and morbidity will be analyzed using mixed-models repeated measures analysis of variance. Mortality will be compared using Kaplan-Meier curves and log-rank statistics. Discussion. The Stent-in 2 study is a randomized controlled multicenter trial that will provide evidence whether or not colonic stenting as bridge to surgery is to be performed in patients with acute left-sided colonic obstruction. Trial registration. Current Controlled Trials ISRCTN46462267
HP1 Recruits Activity-Dependent Neuroprotective Protein to H3K9me3 Marked Pericentromeric Heterochromatin for Silencing of Major Satellite Repeats
H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP) as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription
- …
