740 research outputs found

    Beyond the current noise limit in imaging through turbulent medium

    Full text link
    Shift-and-add is an approach employed to mitigate the phenomenon of resolution degradation in images acquired through a turbulent medium. Using this technique, a large number of consecutive short exposures is registered below the coherence time of the atmosphere or other blurring medium. The acquired images are shifted to the position of the brightest speckle and stacked together to obtain high-resolution and high signal-to-noise frame. In this paper we present a highly efficient method for determination of frames shifts, even if in a single frame the object cannot be distinguished from the background noise. The technique utilizes our custom genetic algorithm, which iteratively evolves a set of image shifts. We used the maximal energy of stacked images as an objective function for shifts estimation and validate the efficiency of the method on simulated and real images of simple and complex sources. Obtained results confirmed, that our proposed method allows for the recovery of spatial distribution of objects even only 2% brighter than their background. The presented approach extends significantly current limits of image reconstruction with the use of shift-and-add method. The applications of our algorithm include both the optical and the infrared imaging. Our method may be also employed as a digital image stabilizer in extremely low light level conditions in professional and consumer applications.Comment: 8 pages, 4 figure

    Impulsive noise removal from color images with morphological filtering

    Full text link
    This paper deals with impulse noise removal from color images. The proposed noise removal algorithm employs a novel approach with morphological filtering for color image denoising; that is, detection of corrupted pixels and removal of the detected noise by means of morphological filtering. With the help of computer simulation we show that the proposed algorithm can effectively remove impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics and processing speed with that of common successful algorithms.Comment: The 6th international conference on analysis of images, social networks, and texts (AIST 2017), 27-29 July, 2017, Moscow, Russi

    Fingering instability down the outside of a vertical cylinder

    Get PDF
    We present an experimental and numerical study examining the dynamics of a gravity-driven contact line of a thin viscous film traveling down the outside of a vertical cylinder of radius R. Experiments on cylinders with radii ranging between 0.159 and 3.81 cm show that the contact line is unstable to a fingering pattern for two fluids with differing viscosities, surface tensions, and wetting properties. The dynamics of the contact line is studied and results are compared to previous studies of inclined plane experiments in order to understand the influence substrate curvature plays on the fingering pattern. A lubrication model is derived for the film height in the limit that ¼ H=R ( 1, where H is the upstream film thickness, and in terms of a Bond number qgR 3 /(cH), and the linear stability of the contact line is analyzed using traveling wave solutions. Curvature controls the capillary ridge height of the traveling wave and the range of unstable wavelength when ¼ Oð10 À1 Þ, whereas the shape and stability of the contact line converge to the behavior one observes on a vertical plane when Oð10 À2 Þ. The most unstable wave mode, cutoff wave mode for neutral stability, and maximum growth rate scale as c Bo 0:45 where c Bo ¼ qgR 2 =c ! 1:3, and the contact line is unstable to fingering when c Bo ! 0:56. Using the experimental data to extrapolate outside the range of validity of the thin film model, we estimate the contact line is stable when c Bo < 0:56. Agreement is excellent between the model and the experimental data for the wave number (i.e., number of fingers) and wavelength of the fingering pattern that forms along the contact line

    No differences in value-based decision-making due to use of oral contraceptives

    Get PDF
    Fluctuating ovarian hormones have been shown to affect decision-making processes in women. While emerging evidence suggests effects of endogenous ovarian hormones such as estradiol and progesterone on value-based decision-making in women, the impact of exogenous synthetic hormones, as in most oral contraceptives, is not clear. In a between-subjects design, we assessed measures of value-based decision-making in three groups of women aged 18 to 29 years, during (1) active oral contraceptive intake (N = 22), (2) the early follicular phase of the natural menstrual cycle (N = 20), and (3) the periovulatory phase of the natural menstrual cycle (N = 20). Estradiol, progesterone, testosterone, and sex-hormone binding globulin levels were assessed in all groups via blood samples. We used a test battery which measured different facets of value-based decision-making: delay discounting, risk-aversion, risk-seeking, and loss aversion. While hormonal levels did show the expected patterns for the three groups, there were no differences in value-based decision-making parameters. Consequently, Bayes factors showed conclusive evidence in support of the null hypothesis. We conclude that women on oral contraceptives show no differences in value-based decision-making compared to the early follicular and periovulatory natural menstrual cycle phases. Copyright © 2022 Lewis, Kimmig, Kroemer, Pooseh, Smolka, Sacher and Derntl

    Разработка информационных систем управления рисками для предметных областей

    Get PDF
    This paper is about specifics of developing risk management information system in construction company and advertising business

    Dynamics of free surface perturbations along an annular viscous film

    Get PDF
    It is known that the free surface of an axisymmetric viscous film flowing down the outside of a thin vertical fiber under the influence of gravity becomes unstable to interfacial perturbations. We present an experimental study using fluids with different densities, surface tensions, and viscosities to investigate the growth and dynamics of these interfacial perturbations and to test the assumptions made by previous authors. We find that the initial perturbation growth is exponential, followed by a slower phase as the amplitude and wavelength saturate in size. Measurements of the perturbation growth for experiments conducted at low and moderate Reynolds numbers are compared to theoretical predictions developed from linear stability theory. Excellent agreement is found between predictions from a long-wave Stokes flow model [Craster and Matar, J. Fluid Mech. 553, 85 (2006)] and data, while fair to excellent agreement (depending on fiber size ) is found between predictions from a moderate-Reynolds-number model [Sisoev et al., Chem. Eng. Sci. 61, 7279 (2006)] and data. Furthermore, we find that a known transition in the longer-time perturbation dynamics from unsteady to steady behavior at a critical flow rate Q(c) is correlated with a transition in the rate at which perturbations naturally form along the fiber. For Q Q(c) (unsteady case), the rate of perturbation formation is modulated. As a result, the position along the fiber where perturbations form oscillates irregularly, and the initial speed and spacing between perturbations varies, resulting in the coalescence of neighboring perturbations further down the fiber.Physic

    Heat Transfer Process Within The R744 Two-phase Ejector: Numerical And Experimental Study

    Get PDF
    The proposed three dimensional CFD model to simulate the influence of the heat transfer on the R744 two-phase ejector performance is presented. The numerical model was developed based on the homogeneous real fluid flow assumption with the enthalpy-based formulation of the energy equation. The R744 two-phase ejector was designed to evaluate the temperature profile within the ejector walls. The prototype R744 ejector for experimental investigation was manufactured by Institute of Thermal Technology and ATM in Poland. The performance measurements were carried out at a R744 test facility at SINTEF/NTNU in Norway. The foregoing ejector was equipped with the thirteen thermocouples located inside the ejector to measure the wall temperature in different ejector section i.e. the motive nozzle, the suction nozzle, the mixing section and the diffuser. The experimental test campaign at different operating conditions typical for refrigeration application was carried out and the uncertainty of the measurement was defined. Moreover, the experimental data are applied to validate the CFD results at defined operating conditions. The numerical results were set to evaluate the influence of the wall temperature on the two-phase flow parameters. In addition, the heat transfer coefficient of the two-phase flow within the ejector was estimated. The analysis of the heat transfer process within the R744 two-phase ejector let to investigate the influence of the ambient conditions and the different temperature levels of the motive and suction streams on the ejector performance

    Analytic Tableaux for Simple Type Theory and its First-Order Fragment

    Full text link
    We study simple type theory with primitive equality (STT) and its first-order fragment EFO, which restricts equality and quantification to base types but retains lambda abstraction and higher-order variables. As deductive system we employ a cut-free tableau calculus. We consider completeness, compactness, and existence of countable models. We prove these properties for STT with respect to Henkin models and for EFO with respect to standard models. We also show that the tableau system yields a decision procedure for three EFO fragments
    corecore