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We present an experimental and numerical study examining the dynamics of a gravity-driven

contact line of a thin viscous film traveling down the outside of a vertical cylinder of radius

R. Experiments on cylinders with radii ranging between 0.159 and 3.81 cm show that the contact

line is unstable to a fingering pattern for two fluids with differing viscosities, surface tensions, and

wetting properties. The dynamics of the contact line is studied and results are compared to previous

studies of inclined plane experiments in order to understand the influence substrate curvature plays

on the fingering pattern. A lubrication model is derived for the film height in the limit that

� ¼ H=R� 1, where H is the upstream film thickness, and in terms of a Bond number qgR3/(cH),

and the linear stability of the contact line is analyzed using traveling wave solutions. Curvature

controls the capillary ridge height of the traveling wave and the range of unstable wavelength when

� ¼ Oð10�1Þ, whereas the shape and stability of the contact line converge to the behavior one

observes on a vertical plane when � � Oð10�2Þ. The most unstable wave mode, cutoff wave mode

for neutral stability, and maximum growth rate scale as cBo0:45 where cBo ¼ qgR2=c � 1:3, and the

contact line is unstable to fingering when cBo � 0:56. Using the experimental data to extrapolate

outside the range of validity of the thin film model, we estimate the contact line is stable whencBo < 0:56. Agreement is excellent between the model and the experimental data for the wave

number (i.e., number of fingers) and wavelength of the fingering pattern that forms along the

contact line. VC 2011 American Institute of Physics. [doi:10.1063/1.3633530]

I. INTRODUCTION

The dynamics of thin fluid layers spreading on solid

substrates has applications ranging from coating processes in

manufacturing (applying paints, fabricating semiconductors,

and coating medications) to geological processes (lava

flow). Typically, in manufacturing applications, a uniform

coating is desired with no dry patches. In the presence of

external forcing, such as gravitational,1,2 centrifugal3 or

Marangoni,4,5 the moving contact line located at the fluid/

solid/air interface can become unstable to undulatory pertur-

bations that evolve into fingers. The capillary ridge that

forms along the advancing contact line plays a significant

role in the fingering pattern that emerges6 and the wetting

property of the fluid plays a key role in controlling film cov-

erage.2 A recent review by Craster and Matar7 highlights the

advances and challenges ahead in understanding the dynam-

ics of thin film flows in these and in other settings. Our study

focuses on the dynamics of a gravity-driven contact line of a

thin film flowing down the outside of a vertical cylinder

which has applications to the coating of cylinders ranging in

size from fibers to conduits.

Numerous experimental and analytical studies have

examined the dynamics of a gravity-driven contact line

down an inclined or vertical plane,1,2,6,8–27 while other stud-

ies have examined the dynamics of thin films down the out-

side of a horizontal cylinder and spherical substrate35 and on

the inside or outside of a cylindrical substrate after the sub-

strate has been fully coated.28–34 Flow down the outside of a

vertical cylinder of radius R introduces two effects that dis-

tinguish it from the planar case: azimuthal curvature and per-

iodic boundary conditions. Within this context, interesting

questions arise that probe the effects of curvature, including

1. Given that azimuthal curvature becomes negligible as

R!1, is there a critical radius Rc above which the con-

tact line behavior becomes indistinguishable from that on

a vertical plane?

2. Is there a critical radius rc below which fingering is inhib-

ited? Determining the optimal cylinder size that reduces

finger formation for a specific fluid could be useful in

coating processes.

3. How do features of the fingering pattern, such as finger

shape, growth, and wavelength, depend on the azimuthal

curvature and fluid properties? To understand curvature’s

influence, we compare these quantities to values reported

in experimental and numerical studies for the planar case.

Given the connection between a cylindrical and planar

substrate, we highlight results from experimental and numer-

ical studies on inclined and vertical planes.

The motion of a gravity-driven contact line down an

inclined plane has been examined experimentally for

viscous,1,2,6,9–13 particle-laden,14 and yield-stress fluids15 and

for granular media16 (avalanches). For viscous fluids, several

experimental studies have focused on the shape, wavelength,

and growth of the fingering pattern that forms under constant

volume1,2,9–12 or constant flux6 conditions using both wetting

and partially wetting fluids. For inclination angles up to 54�,
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Huppert1 found glycerin forms long straight fingers of uni-

form width with the tip positions scaling like t0.6 while the

trough positions remain stationary. In contrast, he found that

silicone oil fingers form a triangular sawtooth pattern with tip

and trough positions scaling like t0.35 and t0.28, respectively.1

Jerret and de Bruyn10 found the mean position of the glycerin

tips scale like t0.65 for inclination angles as large as 32�. Pla-

nar studies have focused on how inclination angle effects the

fingering pattern. A goal of this study is to understand how

curvature of the cylindrical substrate effects the fingering pat-

tern. Experiments are conducted with the same fluids used in

inclined plane studies1,2,9,10 in order to draw comparisons and

to distinguish curvature’s effect on the flow.

Lubrication theory is commonly used to model thin film

flows where the fluid motion is averaged over the film depth.

The lubrication model for a thin film of height x¼ h(z, y, t)
flowing down a vertical plane is given by

@thþ @zh
3 þr � ðh3rr2hÞ ¼ 0; (1)

where y is the transverse direction, z is parallel to the direc-

tion of gravity, and the evolution of the film height is con-

trolled by gravitational (second term) and surface tension

effects (third term).17–19 Hydrodynamic modeling breaks

down at a moving contact line as the no-slip condition causes

a stress singularity at the fluid/solid/air interface.36 To regu-

larize this problem, the no-slip condition is relaxed by allow-

ing slip at the contact line37,38 or introducing a thin precursor

film ahead of the contact line.19 Both models require intro-

ducing a free parameter into the problem, either a slip param-

eter or a precursor film thickness; Spaid and Homsy20 show

qualitatively similar stability results that are obtained when

these two parameters are equal in value. In a numerical

study, Diez et al.24 find the precursor model is computation-

ally more efficient than the slip model.

In a linear stability analysis of flow down a vertical

plane using Eq. (1), Troian et al.19 show the contact line is

unstable to a finite band of wavenumbers and that short

wavelength perturbations are stabilized by surface tension;

these results were found to be weakly dependent on the pre-

cursor film thickness. In a similar analysis, Spaid and

Homsy20 show the most unstable wave number is insensitive

to the precursor thickness while the maximum growth rate is

weakly sensitive. Predictions for the most unstable wave-

length by Troian et al.19 were found to agree well with ex-

perimental observations of Huppert1 and Jerret and de

Bruyn.10 Bertozzi and Brenner8 extended the analysis of

Troian et al. to an inclined plane and found that the normal

component of gravity reduces the unstable growth rates. Sev-

eral studies have examined the influence of perturbations

within the precursor film on contact line stability.8,13,21

Computational studies of viscous flow down inclined or

vertical planes using a lubrication model for partial and com-

plete wetting fluids have investigated short- and long-time

dynamics of the contact line18,22,23,26 and have been instru-

mental in identifying the primary factors that control the

nonlinear dynamics of finger formation on planar surfaces.

In early work, Schwartz18 examined finger formation for

completely wetting fluids using a precursor film model.

Moyle et al. 22 using a slip model find that the contact slope

is a key ingredient to accurately model film coverage and fin-

ger shape for partially and completely wetting fluids. Eres et
al.23 use a disjoining pressure model, which incorporates a

precursor film layer and static contact angle, to model par-

tially wetting fluids. Their predictions of finger wavelength

and growth rate agree with linear stability results and three

regimes of fingering pattern were identified as a function of

the contact angle. Finally, Kondic and Diez26 have examined

the influence of inclination angle on finger shape for com-

pletely wetting fluids.

The outline of the paper is as follows. In Sec. II, an evo-

lution equation for film height that models the gravity-driven

flow of a viscous film down the outside of a vertical cylinder

is derived using lubrication theory. In Sec. III, experimental

data for two fluids and six cylinders (0.159 � R � 3.18 cm)

is presented. In Sec. IV, the unperturbed contact line is mod-

eled by an axisymmetric traveling wave solution, the linear

stability of the traveling wave is analyzed to perturbations in

the azimuthal direction, and predictions from the model are

compared to experimental data. Conclusions are provided in

Sec. V.

II. DERIVATION OF LUBRICATION MODEL

An incompressible Newtonian fluid, of kinematic vis-

cosity �, density q, and surface tension c, flows under gravity

down the outside of a vertical cylinder of radius R (see

Fig. 1); the acceleration of gravity is denoted by g. The flow,

described in cylindrical coordinates with axial coordinate z
directed down along the cylinder axis, has velocity field

u¼ (u, v, w) and pressure field p with free surface h meas-

ured radially from the cylinder surface as shown in Fig. 1;

the mean curvature of the free surface is denoted by j. For

convenience, a modified radial coordinate y¼ r�R is intro-

duced so that the flow can be analyzed in the interval

0< y< h, with y¼ 0 corresponding to the cylinder surface

and y¼ h to the free surface.

In experiments, we have investigated the flow of fluid

down the outside of a vertical cylinder for a range of cylinder

radii (0.159 � R � 3.81 cm). For all but the smallest

FIG. 1. Schematic of a viscous film of thickness h(h, z, t) flowing down the

outside of a vertical cylinder of radius R.
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cylinder, the quasi-steady film thickness behind the contact

line, H (shown in Fig. 1), was significantly smaller than the

cylinder radius. We make use of this observation by deriving

a lubrication model in the limit that � ¼ H=R� 1; notice �
is proportional to the substrate curvature. Our presentation

closely matches the derivation by Evans et al.,30 though the

direction of the flow and orientation of the experiment they

examine are different than those considered here. Following

Evans et al.,30 the free boundary problem is nondimensional-

ized with the film thickness scaled by H and the substrate

dimensions by R

�y ¼ y

�R
; �h ¼ h

�R
; �z ¼ z

R
; �r ¼ r

R
; �t ¼ t

T
; (2a)

�u ¼ u

�U
; �v ¼ v

U
; �w ¼ w

U
; �p ¼ p

P
; �j ¼ Rj; (2b)

where the overbar denotes dimensionless quantities, t denotes

time, and the characteristic velocity, pressure, and time scales

are U ¼ gH2=�, P ¼ qgH, and T ¼ R=U, respectively.

Note that the pressure and time scales were chosen to obtain a

lubrication approximation,30 and the scaled radius can be writ-

ten as �r ¼ 1þ ��y:
Using these scalings, the nondimensional form of the

continuity equation and Navier-Stokes equations which gov-

ern the flow are

1

�r
@�yð�r�uÞ þ 1

�r
@h�vþ @�z �w ¼ 0; (3a)

�2Re �@�t�uþ ��u@�y�uþ � �v

�r
@h�uþ ��w@�z�u�

�v2

�r

� �

¼ �@�y �pþ ��Du� �3 �u

�r2
� 2�2

�r2
@h�v; (3b)

�2Re @�t�vþ �u@�y�vþ �v

�r
@h�vþ �w@�z�vþ �

�u�v

�r

� �

¼ � �
�r
@h�pþ �Dv� �2 �v

�r2
þ 2�3

�r2
@h�u; (3c)

�2Re @�t �wþ �u@�y �wþ �v

�r
@h �wþ �w@�z �w

� �
¼ ��@�z�pþ �Dwþ 1;

(3d)

where the choice of scaling for the radial velocity ensures all

terms in Eq. (3a) are O(1), Re ¼ RU=� is the Reynolds num-

ber, �2Re represents a reduced Reynolds number, and

�D ¼ 1

�r
@�y �r@�y

� �
þ �

2

�r2
@hh þ �2@�z�z:

Using lubrication theory, we neglect inertial effects by

assuming terms of Oð�2ReÞ and higher are small in Eqs.

(3b)–(3d).

The scaled boundary conditions of the flow, include no-

slip at the cylinder surface, u ¼ 0 at �y ¼ 0, and the normal

stress, tangential stress, and kinematic conditions at the free

surface �y ¼ �h, which expanded in � are

� �pþ 2�@�y �u� 2�@�z
�h@�y �w� 2�@h

�h@�y�vþ Oð�2Þ

¼ � 1

�cBo
ð1� ��h� � �r2 �hþ Oð�2ÞÞ; (3e)

@�y�v� ��vþ Oð�2Þ ¼ 0; (3f)

@�y �wþ Oð�2Þ ¼ 0; (3g)

@�t
�hþ �v

�r
@h

�hþ �w@�z
�h ¼ �u; (3h)

where �r2 ¼ @hh þ @�z�z and cBo ¼ qgR2=c ¼ ðR=lcÞ2 is the

Bond number with lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ðqgÞ

p
representing the capillary

length. The Bond number is related to the reduced Bond

number, Bo ¼ �2cBo ¼ qgH2=c, used in modeling gravity-

driven thin film flow on a planar substrate.19

Next, we expand the pressure and velocity fields in

powers of �

�p ¼ ��1p0 þ pð0Þ þ �pð1Þ þ…;

�u ¼ uð0Þ þ �uð1Þ þ…;

where the term ��1p0 with p0 ¼ cBo�1 in �p balances the cur-

vature of the cylindrical substrate in Eq. (3e). Linearizing

Eq. (3) in � and solving for �p and u, we find at leading order

pð0Þð�y; h; �z;�tÞ ¼ � 1cBo
ð�hþ �r2 �hÞ; (4a)

uð0Þð�y; h; �z;�tÞ ¼ ðuð0Þ; vð0Þ;wð0ÞÞ

¼ � 1

2
�y2@�z

�h; 0;� 1

2
�y2 þ �h�y

� �
; (4b)

and at Oð�Þ, the relevant velocity terms for deriving the

lubrication model are

vð1Þð�y; h; �z;�tÞ ¼ � 1cBo

�y2

2
� �h�y

� �
@hð�hþ �r2 �hÞ; (4c)

wð1Þð�y; h; �z;�tÞ ¼ � 1cBo

�y2

2
� �h�y

� �
@�zð�hþ �r2 �hÞ

þ 1

6
�y3 � 3�y2 �hþ 3�y�h

2
� �

: (4d)

Given the choice of scalings (2), the leading order pressure

term (4a) represents a balance of the free surface curvature

in the radial and axial directions which couples into the ve-

locity field at Oð�Þ (Eqs. (4c) and (4d)). The leading order

axial velocity profile is parabolic due to the gravitational

draining of fluid down the cylinder.

To derive the lubrication model, we use conservation of

mass with the no-slip and kinematic boundary conditions to

obtain the relation

ð1þ ��hÞ@�t
�hþ @h

�Qh þ @�z
�Qz ¼ 0; (5)

where ð1þ ��hÞ is the scaled radial distance from the cylinder

axis to the free surface and the scaled flux components are

defined by

�Qh ¼
ð �h

0

�v d�y ¼
ð �h

0

ðvð0Þ þ �vð1ÞÞ d�y ¼ ��h
3

3cBo
@hð�hþ �r2 �hÞ;

(6a)
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�Qz ¼
ð �h

0

�r �w d�y ¼
ð �h

0

ð1þ ��yÞðwð0Þ þ �wð1ÞÞ d�y

¼ 1

3
ð�h3 þ ��h

4Þ þ ��h
3

3cBo
@�zð�hþ �r2 �hÞ: (6b)

Substituting Eq. (6) into Eq. (5) yields an evolution equation

for the film height

1þ ��hð Þ@�t
�hþ 1

3
@�zð�h3þ ��h4Þ þ �

3cBo
�r � �h

3 �rð�hþ �r2 �hÞ
h i

¼ 0;

(7)

where �r ¼ eh@h þ ez@�z, the second and third terms represent

contributions from gravity and surface tension, respectively,

the first two Oð�Þ terms arise from conserving mass across

the cross-sectional area of an annular ring (see Eqs. (5) and

(6b)) and the third term arises from the free surface curvature

in the radial and axial directions. This model is valid when

�� 1 and �2Re� 1. In Sec. IV, we carry out analysis of

Eq. (7) by modeling the contact line of the flow with a travel-

ing wave solution and analyzing its linear stability to obtain

predictions on the fingering pattern that emerges along the

contact line. To simplify notation, the overbar notation is

dropped in the rest of the paper.

III. EXPERIMENTS

A. Experimental apparatus and details

To examine the influence of cylinder curvature on fin-

gering behavior, experiments were conducted with six 61 cm

tall solid, clear cast acrylic cylinders with radii ranging

between 0.159 � R � 3.81 cm; a top view of the experiment

is shown in Fig. 2. Analogous to inclined plane experi-

ments,1,2,6,10 the cylinder surface is coated using either a

constant volume or constant flux method. For the four largest

cylinders (R � 0.635 cm), a hollow reservoir cup is set

directly atop the cylinder and filled with a specific volume of

fluid chosen to ensure complete coverage of the cylinder (see

Table I); the outer diameter of each reservoir cup matches its

companion cylinder and the inner diameter and initial pres-

sure head are listed in Table I. The reservoir cup, which acts

as a gate, is raised a height of 1.05 6 0.02 mm allowing the

fluid to flow down the cylinder surface (shown at a later

stage in Fig. 3(b)). Capillary effects prevented the experi-

mental fluids, glycerin, and silicone oil, to flow from a reser-

voir for the two smallest cylinders (R¼ 0.159, 0.318 cm);

the capillary length of glycerin and silicone oil are lc¼ 0.22

cm and 0.15 cm, respectively. For these experiments, a capil-

lary tube (OD¼ 0.476, 0.636 cm, respectively) connected to

a syringe pump is set vertically plumb 1.05 mm above the

cylinder, to maintain the same gap height as in the constant

volume experiments, and fluid is pumped onto the cylinder

at 5 ml/min.

The experimental fluids, 99% weight glycerin (Aldrich)

and 1000 cSt silicone oil (Dow Corning), have different wet-

ting properties on acrylic with glycerin partially wetting and

silicone oil completely wetting. To distinguish the fluid from

the clear cylinder, fluorescent dye (APD Oil and Fluid Dye

P/N 801, Corrosion Consultants Inc.) was added to each fluid

and the experiment was illuminated with black lights, as

shown in Fig. 3(b). Three runs were conducted for every

FIG. 2. Schematic of top view of experiment.

TABLE I. Constant volume experimental details.

Cylinder

radius (R) (cm)

Fluid

volume (ml)

Reservoir cup

inner diameter (cm)

Pressure

head (cm)

0.635 5.5 1.10 5.8

0.953 8.5 1.26 6.8

1.27 11 2.19 2.9

3.81 33 6.96 0.9

FIG. 3. Experiment: (a) The front of the cylinder is in the center and the two images to the left and right are reflections of the back of the cylinder. (b) Silicone

oil fingers develop along the contact line (R¼ 3.81 cm). The fluorescent glow (top center) is the dyed solution remaining in the reservoir.
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fluid and cylinder combination; fluid temperatures are

reported in Table II. Before each run, the cylinders were

washed with Micro cleanser, rinsed with water and ethanol,

and dried with a lint-free tissue.

Movies of the flow were recorded at 100 frames/s using

a digital imaging camera (Phantom v4.2, Vision Research)

with image size 512� 384 pixels2 and resolution 8 pixels/

cm. To visualize around the cylinder periphery, two 61� 46

cm2 mirrors were placed at an 85.8� angle behind the cylin-

der (Fig. 2) and the camera was positioned with two reflec-

tions of the cylinder appearing in each mirror (Fig. 3).

Arclength and axial distances along the cylinder were cali-

brated with a rectangular grid (Fig. 3(a)) and recorded

images were analyzed using software.

In experiments, the contact line loses uniformity close to

the cylinder top (the mean axial distance, zp, is reported in

Table II) which made it difficult to measure the upstream

film thickness, H, when the contact line initially becomes

unstable,27 so instead measurements were made after the

instability. After the contact line has moved sufficiently, an

equilibrated value of H is estimated as 0.085 6 0.02 cm with

the upper bound equaling the gap height.

Kinematic viscosity was measured using a Brookfield

DV-III rheometer; values based on mean fluid temperature

are listed in Table II. The surface tension (measured using a

Fischer model 21 tensiomat) and density of the glycerin and

silicone oil dye solutions are c¼ 58.4 and 21.9 dyn/cm and

q¼ 1.26 and 0.986 g/cm3, respectively.

The reduced Bond number for glycerin (Bo¼ 0.15) and

silicone oil (Bo¼ 0.32) are constant in the experiments. The

dimensionless parameters that characterize the flow: the

slenderness parameter; Reynolds number; and Bond number,

are reported in Table II. In the experiments, � � Oð10�1Þ
and �2Re � Oð10�3Þ, which satisfy the conditions of the

lubrication model (7) and justifies a comparison between the

model and experimental data. For each fluid, � is the only

free parameter in Eq. (7) since H is fixed in this study, Bo is

constant and cBo ¼ ��2Bo.

B. Experimental observations

Perturbations do not form spontaneously along the con-

tact line, as in inclined plane experiments,1,9 but rather de-

velop within seconds of each other. Figure 4 shows typical

fingering patterns for (a) glycerin and (b) silicone oil. Finger

tips and troughs are the maxima and minima downstream

axial positions of the contact line. Glycerin fingers form long

straight rivulets of nearly uniform width with the tips travel-

ing downstream and the troughs stationary at the cylinder

top. The finger shape and behavior of glycerin are identical

to observations on an inclined plane.1,2,10 Silicone oil fingers

are nearly uniform in width downstream from the troughs

and the tips and troughs both travel downstream. The finger

shape of silicone oil is different than the triangular sawtooth

pattern observed on an inclined plane1,9 due to the curvature

of the cylindrical substrate. In both experiments, the finger

length, measured from neighboring tip to trough, and wave-

length, measured from neighboring tip to tip, vary across the

TABLE II. Experimental details: cylinder radius (cm), slenderness parameter, fluid temperature (�C), kinematic viscosity (cm2/s), Reynolds number, Bond

number, and axial distance of contact line at instability (cm).

Glycerin Silicone Oil

R � T � Re cBo zp T � Re cBo zp

0.159 0.533 20.6–21.3 8.46 0.0156 0.536 0.35 	21.0 	10.6 0.0099 1.12 0.37

0.318 0.266 21.3–21.6 8.18 0.0334 2.14 0.23 21.0 10.6 0.0199 4.46 0.39

0.635 0.133 21.5–21.8 7.98 0.0702 8.55 — 21.5–21.7 10.4 0.0413 17.8 —

0.953 0.0889 20.3–20.4 8.97 0.0833 19.3 0.79 20.2–20.4 10.8 0.0574 40.1 1.46

1.27 0.0667 22.0–22.3 7.71 0.150 34.2 1.08 22.0–22.3 10.3 0.0842 71.2 0.92

3.81 0.0222 21.6–21.8 7.98 0.421 308 0.75 21.8–22.6 10.3 0.252 641 1.21

FIG. 4. Typical fingering pattern along cylinder front face for (a) glycerin

and (b) silicone oil (R¼ 3.81 cm).

FIG. 5. Downstream tip and trough positions versus time: (*) glycerin

tip; (h) silicone oil tip; (4) silicone oil trough (h and 4 are a neighboring

tip and trough, R¼ 3.81 cm). Solid curves are best fits to Eq. (8): for

glycerin, ztip¼ 1.42(t� 0)0.85; for silicone oil, ztip¼ 1.22(t� 1.6)0.74 and

ztr¼ 0.75 (t� 1.4)0.64.
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fingering pattern. In all experiments, the finger tips and non-

stationary troughs traveled straight down the cylinder.

The tip (ztip) and trough (ztr) positions in Fig. 5 corre-

spond to a glycerin tip (circles), a silicone oil tip (squares)

and a silicone oil trough (triangles) with R¼ 3.81 cm; the

fluid initially passes the cylinder top at z¼ 0 when t¼ 0.

Best fits of the data (solid curves) are made to the power-law

z ¼ Aðt� t0ÞB for t > t0: (8)

Following Ref. 10, tip and trough data for several fingers in

three runs were fit to Eq. (8). Values of amplitude A and

power B for the six cylinders are shown in Fig. 6 for the tips

and in Fig. 7 for the troughs; symbols denote the mean (glyc-

erin—circles and silicone oil—squares) and error bars denote

the range of values (glycerin—dashed and silicone oil—

solid). Neither A nor B scale with R. In all experiments, fin-

ger length (¼ ztip� ztr) monotonically increases in time. The

horizontal lines in Figs. 6(b) and 7(b) are power data from

inclined plane experiments.1,10 The cylinder data in Fig. 6

indicates glycerin tips travel faster than silicone oil tips con-

sistent with the behavior in inclined plane experiments.1 A

comparison of power data indicates tip and trough positions

travel faster down a vertical cylinder than an inclined plane.

Experimental data of finger width for glycerin (circles)

and silicone oil (squares) are shown in Fig. 8 which for con-

venience is plotted versus cBo; all fingers were measured in

three runs with symbols representing the mean and error bars

the standard deviation of the data. Within the standard devia-

tion, finger width is constant at 0.56 cm (dashed line) and

thus independent of the wetting conditions, cylinder radii,

and flow delivery used in experiments.

The number of fingers that form along a contact line

approximates the fingering pattern wave number, q. In

experiments, q increases with R; data from three runs are

reported in Table III. Measurements of the mean and stand-

ard deviation of finger wavelength, k, are reported in Table

III. The value of k for the smallest cylinder (R¼ 0.159 cm)

equals the cylinder circumference since only one finger

formed. On average there is a 28% deviation from the mean

wavelength in a fingering pattern for R � 0.318 cm; this is

comparable to inclined plane experiments where deviations

up to 25% have been reported.1,9

IV. ANALYSIS AND SIMULATIONS

We carry out analysis of the lubrication model (7) by

characterizing the unperturbed contact line as an axisymmet-

ric traveling wave solution and examining the stability of the

traveling wave using linear analysis. The influence of � andcBo on the traveling wave and its stability is examined, and

the stability results are compared to experimental data for q
and k.

A. Traveling wave solution

The base state of the unperturbed flow is an axisymmet-

ric traveling wave solution which under the change of varia-

bles h(z, t)¼ h0(n) in Eq. (7) satisfies

�U h0þ
1

2
�h2

0

� �0
þ1

3
ðh3

0þ �h4
0Þ
0 þ �

3cBo
h3

0ðh00þ h0000 ÞÞ
0 ¼ 0;

�
(9a)

where n¼ z�Ut with traveling wave speed, U. The base

state is matched to a flat film upstream of the contact line,

h0! 1 as n!�1, and to a thin precursor film downstream

of the contact line, h0 ! b as n !þ1 with b� 1.19 The

precursor film prevents a singularity that forms at the contact

line on an unwetted surface due to the no-slip condition and

has a minimal effect on the stability of the contact line.19,20

The value of b cannot be measured in experiments and is a

FIG. 6. Amplitude and power from fits of tip positions to Eq. (8) versus cyl-

inder radius for glycerin (*) and silicone oil (h). Symbols denote mean val-

ues measured over several fingers and error bars represent range of values.

(b) Horizontal lines are data from inclined plane experiments: dashed

lines—glycerin (B¼ 0.60 (Ref. 1) and B¼ 0.65 (Ref. 10)); dotted-dashed

line—silicone oil (B¼ 0.35 (Ref. 1)).

FIG. 7. Amplitude and power from fits of silicone oil trough positions to

Eq. (8) versus cylinder radius. Symbols denote mean values measured over

several fingers and error bars represent range of values. (b) Dotted-dashed

line is data from inclined plane experiments (B¼ 0.28 (Ref. 1)).

FIG. 8. Finger width versus Bond number measured over several fingers in

experiments for glycerin (
) and silicone oil (n); symbols—mean value and

error bars—standard deviation. Within the standard deviation, finger width

is constant at 0.56 cm (dashed line).
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free parameter in the model. The boundary conditions at

n!61 sets

U ¼ 1þ bþ b2 þ �ð1þ bþ b2 þ b3Þ
3ð1þ �=2þ �b=2Þ ; (9b)

and uniquely defines the traveling wave solution, h0(n).

There are standard ordinary differential equation (ODE)

methods to solve Eq. (9) numerically.39 Steady-state travel-

ing wave solutions were computed for a range of values of

the precursor film thickness (0.07 � b � 0.1) and dimen-

sional upstream film height (0.065 � H � 0.105 cm, taken

from experiments). Numerical challenges arise when using

smaller values of b on a uniform mesh which restricted the

values examined here. In all simulations, the peak of the cap-

illary ridge and steepness of the contact line are decreasing

functions of b and H as shown in Figs. 9(a) and 9(b), respec-

tively. Traveling waves moving down a vertical plane have a

similar dependence on b.8,19,20

B. Linear stability analysis

For convenience, the lubrication model (7) is trans-

formed to the moving reference frame with hðh; z; tÞ ¼ ~hðh;
n; tÞ

ð@t � U@nÞ ~hþ �
2

~h
2

� �
þ 1

3
@nð~h3 þ �~h4Þ

þ �

3cBo
@hð~h

3ð~hh þ ~hhhh þ ~hnnhÞÞ
h

þ @nð~h
3ð~hn þ ~hhhn þ ~hnnnÞÞ

i
¼ 0: (10)

After a short period in experiments, the contact line develops

an undulatory pattern in h that grows into a fingering pattern.

To model this, the stability of the contact line is examined

by superimposing two-dimensional perturbations onto the

traveling wave solution with sinusoidal variation in the azi-

muthal direction

~hðh; n; tÞ ¼ h0ðnÞ þ /ðnÞebtþiqh;

where /� h0 and q represents the azimuthal wave number.

Substituting ~h into Eq. (10) and keeping only linear terms in

the perturbed variable, / yields the eigenvalue problem

1

1þ �h0

d

dn
L0/þ

q2

1þ �h0

L2/þ
q4

1þ �h0

L4/ ¼ b/; (11a)

with

L0 ¼ Uð1þ �h0Þ �
1

3
ð3h2

0 þ 4�h3
0Þ

� �

3cBo
h3

0

d

dn
þ d3

dn3

� �
þ 3h2

0

dh0

dn
þ d3h0

dn3

� �	 

; (11b)

L2 ¼
�

3cBo
h3

0 þ 2h3
0

d2

dn2
þ 3h2

0

d

dn

	 

; (11c)

L4 ¼ �
�

3cBo
h3

0; (11d)

defined on n [ (�1,1). Solving Eq. (11) numerically first

involves computing the traveling wave solution h0 on the

discretized domain n [ [0, L]. As a result, the corresponding

eigenvalue problem involves solving a system of linear equa-

tions on [0, L] and appropriate boundary conditions for Eq.

(11) must be chosen so that / and its derivatives decay far

from the contact line as on an infinite domain. Following

Golovin et al.,40 who examined the linear stability of a ther-

mally driven film with van der Waals forces on a planar

TABLE III. The number of fingers (q) in a fingering pattern and finger wavelength (k) measured in experiments and the most unstable wave number (q*) and

most unstable wavelength (k*) derived from linear stability theory.

Glycerin Silicone Oil

Experiment Experiment Theory Theory Experiment Experiment Theory Theory

R qa kb q* k*c qa kb q* k*c

(cm) (Run 1, 2, 3) (cm) (cm) (Run 1, 2, 3) (cm) (cm)

0.159 (1, 1, 1) 1.00 0.74 1.35 (1, 1, 1) 1.00 0.87 1.15

0.318 (2, 2, 2) 1.00 6 0.09 1.18 1.69 (2, 2, 2) 1.00 6 0.18 1.47 1.36

0.635 (2, 2, 3) 	1.77 6 0.38 2.15 1.86 (2, 2, 3) 	1.77 6 0.50 2.73 1.46

0.953 (3, 3, 4) 1.80 6 0.95 3.13 1.91 (2, 3, 3) 2.25 6 0.77 3.99 1.50

1.27 (5, 6, 7) 1.33 6 0.40 4.12 1.94 (7, 7, 7) 1.14 6 0.37 5.25 1.52

3.81 (13, 13, 14) 1.80 6 0.50 12.07 1.98 (16, 18, 18) 1.38 6 0.43 15.4 1.55

aNumber of fingers observed in three runs.
bData averaged over all fingers in three runs.
cResults from linear stability analysis with b¼ 0.07 and H¼ 0.085 cm.

FIG. 9. Influence of (a) precursor film thickness and (b) upstream film

height on steady-state traveling wave solutions with Bo¼ 0.32 (correspond-

ing to silicone oil) and R¼ 3.81 cm. In simulations: (a) b¼ 0.07 (dashed),

b¼ 0.10 (solid), and H¼ 0.085 cm (inset shows oscillatory decay ahead of

contact line); (b) H¼ 0.065 cm (solid), 0.085 cm (dashed), 0.105 cm

(dotted-dashed), and b¼ 0.07 (inset shows capillary ridge peaks).
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substrate, this corresponds to the uniform boundary condi-

tions c
ð0Þ
0 /þ c

ð1Þ
0 /n þ c

ð2Þ
0 /nn þ… ¼ 0 at n¼ 0 and

c
ð0Þ
L /þ c

ð1Þ
L /n þ c

ð2Þ
L /nn þ… ¼ 0 at n¼ L where the coeffi-

cients are chosen so that / is minimally affected by the finite

domain. The zero eigenmode /¼ h0n, which arises due to

translational invariance, is the most sensitive to the finite do-

main,40 and as a result, the coefficients are chosen so that the

zero eigenmode, which behaves like /	 ekn as n! 0 and n
! L, satisfies the boundary conditions at n¼ 0

/nn � 2k0;r/n þ ðk2
0;r þ k2

0;iÞ/ ¼ 0; (12a)

/nnn � 2k0;r/nn þ ðk2
0;r þ k2

0;iÞ/n ¼ 0; (12b)

and n¼L

/nn � 2kL;r/n þ ðk2
L;r þ k2

L;iÞ/ ¼ 0; (12c)

/nnn � 2kL;r/nn þ ðk2
L;r þ k2

L;iÞ/n ¼ 0; (12d)

where k0,r and k0,i represent the real and imaginary parts of

the complex conjugate roots of the characteristic equation

coming out of the linearization of the traveling wave solution

upstream at n¼ 0 (corresponding to h0¼ 1) and kL,r and kL,i

are likewise defined downstream at n¼L (corresponding to

h0¼ b). The signs in Eq. (12) have been adjusted from those

reported in Golovin et al.40 (their Eq. (17)). The maximum

eigenvalue b of Eq. (11) as a function of q is computed to es-

tablish the dispersion relation.

Figure 10 shows dispersion curves illustrating the de-

pendence on precursor film thickness and upstream film

height with b¼ 0.07 (solid), b¼ 0.1 (dashed), H¼ 0.065 cm

(thick), H¼ 0.085 cm (medium), and H¼ 0.105 cm (thin).

The most unstable wave number (q*), cutoff wave number

for neutral stability (qcutoff), and maximum growth rate (b*)

are decreasing functions of b and H. The value of b has a

minor effect on q* and qcutoff. Using b as a fitting parameter,

we set b¼ 0.07 since it provides the best comparison

between theory and experiments for wave number and wave-

length of the fingering pattern. The value of b has a greater

influence on b*, however, experimental data are unavailable

to compare to these predictions. Studies analyzing the stabil-

ity of a traveling wave down a vertical plane find that qcutoff

and b* have qualitatively similar dependence on b, while q*

is a weakly increasing function of b.8,19,20 The percent differ-

ence of q*, qcutoff, and b* relative to values with H¼ 0.085

cm are 9.3% for H¼ 0.065 cm and 6.8% for H¼ 0.105 cm.

In simulations using experimental parameters (listed in Table

II), these percent differences increase with R such that for

the smallest cylinder, the percent difference of q*, qcutoff,

and b* are bounded by 4.6% for H¼ 0.065 cm and 4.0% for

H¼ 0.105 cm. Given the experimental resolution of H, we

set H¼ 0.085 cm and use the comparisons with H¼ 0.065

and 0.105 cm to estimate error bars for q*, qcutoff, and b*.

C. Predictions from model and comparison to
experiments

Figure 11(a) shows the effect of �, which is proportional

to the substrate curvature, on the traveling wave solution

with � decreasing (i.e., R increasing) from left to right for the

six traveling waves shown; parameters correspond to experi-

ments with silicone oil listed in Table II. As � decreases, the

contact line steepens, the capillary ridge width decreases and

the capillary ridge height, hmax, varies non-monotonically

(inset); the first two effects are dramatized since n is scaled

by R following Eq. (2). For fixed �, the traveling wave solu-

tion has a steeper front for silicone oil (Bo¼ 0.32) and a

wider capillary ridge for glycerin (Bo¼ 0.15) (not shown).

Figure 11(b) shows the capillary ridge height for glycerin

(dashed line) and silicone oil (solid line) as a function of

FIG. 10. Dispersion curves of growth rate versus wave number developed

from linear stability analysis with Bo¼ 0.32 (corresponding to silicone oil)

and R¼ 3.81 cm. Line types: b¼ 0.07 (solid), b¼ 0.1 (dashed), H¼ 0.065

cm (thick), H¼ 0.085 cm (medium), and H¼ 0.105 cm (thin).

FIG. 11. (a) Traveling wave solutions for silicone oil with b¼ 0.07,

H¼ 0.085 cm, and values of � taken from experiments, � ¼ 0:533, 0.266,

0.133, 0.0889, 0.0667, and 0.0222 (left to right). Inset shows capillary ridge

peaks. (b) Capillary ridge height versus � for glycerin (dashed) and silicone

oil (solid). Squares represent data for traveling waves in (a) and the dotted-

dashed line represents hmax for a traveling wave down a vertical plane using

Eq. (1) with b¼ 0.07.

FIG. 12. Traveling wave solutions for glycerin and silicone oil on a vertical

cylinder with � ¼ 0:063 (solid) and for a vertical plane using Eq. (1) with

b¼ 0.07 (dashed).
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� with squares representing the traveling waves in Fig. 11(a)

and the dotted-dashed line corresponding to hmax for a travel-

ing wave down a vertical plane. The influence of curvature

on the steady-state traveling wave is negligible when

� � Oð10�2Þ as the capillary ridge height and shape of the

traveling waves converge to the height (Fig. 11(b)) and shape

for a vertical plane; an example of the shape is shown in

Fig. 12 where the traveling wave solutions for glycerin

and silicone oil with � ¼ 0:063 (n is rescaled by R/l with

l¼ (Hc/qg)1/31,19 and R¼ 1.35 cm) are nearly indistinguish-

able from those down a vertical plane. The substrate

curvature has a dominant effect when � ¼ Oð10�1Þ with hmax

strongly deviating from the planar value (Fig. 11(b)). Capil-

lary effects also control the capillary ridge height when

� ¼ Oð10�1Þ with hmax larger for glycerin (Bo¼ 0.15) than

for silicone oil (Bo¼ 0.32).

The dispersion curves for glycerin (dashed) and silicone

oil (solid) in Fig. 13 indicate the range of unstable wave

number is a decreasing function of � for both fluids; values

of � are taken from experiments with the three smallest and

largest cylinders in Figs. 13(a) and 13(b), respectively. For

each cylinder, q*, qcutoff, and b* are greater for silicone oil,

with the exception of b* for � ¼ 0:533, indicating the contact

line for silicone oil is more unstable to fingering than glyc-

erin for the cylinders examined.

Given the periodicity of the contact line in h, only an in-

teger number of fingers can form. When nonlinear effects are

negligible, finger wavelength is constant and the number of

fingers is equivalent to wave number. In this case, the num-

ber of fingers observed in experiments should equal the most

unstable integer mode predicted from linear stability theory

instead of q*. In experiments, neither the wavelength nor the

number of fingers in three runs is constant (see Table III),

indicating the contact line is unstable to a range of modes

rather than to the fastest growing one. As an approximation,

we let the number of fingers represent q in order to compare

theoretical predictions to experimental data. One is the few-

est number of fingers that can form along the contact line,

hence q¼ 1 corresponds to the smallest wave number for fin-

gering. If qcutoff< 1, then in principle, the contact line is

stable.

Figure 14 shows a comparison between model and

experiments of wave number as a function of Bond number.

Experimental data for three runs are denoted by solid sym-

bols with the number of occurrences of q not represented

(see Table III for data). Numerical results for qcutoff (blue

symbols) and q* (red symbols) are presented for glycerin

(circles) and silicone oil (squares) with the unstable modes

represented by the region above q¼ 1 (dotted-dashed line)

and below qcutoff (solid line). Agreement is excellent

between theory and experiments as data from 32 of 36 runs

lie within the region of unstable modes. Considering q is

integer-valued in experiments, the comparison is strong for

the outlier runs where: (1) qexpt¼ 2 and qcutoff ¼ 1.84; and

(2) qexpt¼ 7 and qcutoff ¼ 6.46.

Values of qcutoff and q* follow the scaling qcutoff

	 cBo0:44 (solid) and q� 	 cBo0:45 (dashed) for glycerin and

silicone when cBo � 0:7 in Fig. 14. These scalings are equiv-

alent to qcutoff	R0.88 and q*	R0.9, since cBo ¼ ðR=lcÞ2,

indicating the number of fingers increases approximately lin-

early with cylinder circumference. These scalings do not

apply when cBo < 0:7 corresponding to � > 0:47 for glycerin

and � > 0:67 for silicone oil which may represent an upper

bound of � that the lubrication model (7) is valid. The stabil-

ity of the contact line changes when qcutoff¼ 1, this occurs atcBo ¼ 0:56 corresponding to �c ¼ 0:52 for glycerin and

�c ¼ 0:75 for silicone oil, such that for � � �c, the contact

FIG. 13. Dispersion curves for glycerin (dashed, Bo¼ 0.15) and silicone oil

(solid, Bo¼ 0.32) with b¼ 0.07 and H¼ 0.085 cm. The range of unstable

modes is a decreasing function of � for both fluids. (a) � ¼ 0:533, 0.266, and

0.133; (b) � ¼ 0:0889, 0.0667, and 0.0222.

FIG. 14. (Color) Wave number versus Bond number for glycerin (circles)

and silicone oil (squares). Solid symbols—experimental data (Table III),

blue symbols—cutoff modes, and red symbols—most unstable modes

derived from linear stability theory with b¼ 0.07 and H¼ 0.085 cm. Best

fits of data: qcutoff 	 cBo0:44 (solid) and q� 	 cBo0:45 (dashed). Dotted-dashed

line is the critical mode in which one finger grows along the cylinder; the

traveling wave solution is stable for q< 1. Region of unstable modes is

above dotted-dashed line and below solid line.

FIG. 15. Maximum growth rate versus Bond number for glycerin (circles)

and silicone oil (squares) obtained from linear stability analysis with

b¼ 0.07 and H¼ 0.085 cm. Error bars represent range of b* for 0.065 � H
� 0.105 cm and dashed line is best fit, b� 	 cBo0:42, for cBo � 1:3.
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line is unstable to fingering. In principle, the contact line is

stable for � > �c, though the model may not be valid in this

limit. This issue will be addressed in a future analytical study

of Eq. (7).

Figure 15 shows maximum growth rate predicted from

stability theory versus Bond number for glycerin (circles)

and silicone oil (squares) with a sample of error bars dis-

played. The data follows the scaling b� 	 cBo0:42 (dashed)

when cBo � 1:3 indicating the instability grows faster as �
increases. For cBo < 1, b* is a decreasing function which

explains why b* is larger for glycerin (Bo¼ 0.15) than sili-

cone oil (Bo¼ 0.32) for the smallest cylinder (� ¼ 0:533)

shown in Fig. 13(a).

Figure 16 shows a comparison between model and

experiments of finger wavelength as a function of � for (a)

glycerin and (b) silicone oil. The solid symbols and error

bars represent the mean and standard deviation of the experi-

mental data measured in three runs. The curves represent the

most unstable wavelength (dashed), k*, and cutoff wave-

length for neutral stability (solid), kcutoff, predicted from sta-

bility theory; the contact line is longwave unstable

represented by the regions above the solid curves. Agree-

ment is excellent between the model and experimental data.

The model predicts that curvature of the cylindrical sub-

strate has a negligible influence on k when � � Oð10�2Þ as

kcutoff plateaus and k* converges to the most unstable wave-

length for a contact line down a vertical plane, k � 12.6 l
(value consistent with extrapolating data in Ref. 19 and is a

result in Ref. 20) indicated by the dotted-dashed lines in Fig.

16. This represents the same range of � that the capillary

ridge height (Fig. 11(b)) and shape of the traveling wave

(Fig. 12) converge to the height and shape for a traveling

wave down a vertical plane. The substrate curvature has a

dominant effect on k when � ¼ Oð10�1Þ with the range of

unstable wavelength an increasing function of �. Capillary

effects influence finger wavelength with kcutoff and k* larger

for glycerin (Bo¼ 0.15) than for silicone oil (Bo¼ 0.32) as

shown in Fig. 16.

V. CONCLUSIONS

This study considers the dynamics of a gravity-driven

contact line down the outside of a vertical cylinder. In

experiments with glycerin and silicone oil and with cylinder

radii ranging between 0.159 and 3.81 cm, the contact line

develops an instability in the azimuthal direction to form a

fingering pattern. Glycerin fingers form long straight rivulets

of uniform width with stationary troughs at the cylinder top.

Silicone oil fingers are nearly uniform in width further down-

stream from the troughs with tips and troughs both traveling

down the cylinder; the finger shape is different than the trian-

gular sawtooth pattern observed down an inclined plane1,9

due to the substrate curvature. The fingering patterns are

irregular in finger length and wavelength while finger width

is constant in all of the experiments.

A lubrication model is derived for a thin viscous film

flowing down the outside of a vertical cylinder. The contact

line is modeled using a steady-state traveling wave solution

and the stability of the traveling wave is examined using lin-

ear analysis. The model depends only on � ¼ H=R for a par-

ticular fluid, which is proportional to the curvature of the

cylindrical substrate, when the upstream film height H is

fixed as in this experimental study. Substrate curvature

effects dominate when � ¼ Oð10�1Þ, with the capillary ridge

height of the traveling wave and range of unstable wave-

length of the fingering pattern increasing functions of �.
When � � Oð10�2Þ, the capillary ridge height and shape of

the traveling wave and the most unstable wavelength of the

fingering pattern converge to the behavior for a fluid front

down a vertical plane.

The most unstable wave number, cutoff wave number

for neutral stability and maximum growth rate follow the

scaling cBo0:45 for cBo � 1:3 and the stability of the contact

line changes at the critical value cBoc ¼ 0:56 corresponding

to �c ¼ 0:52 for glycerin and �c ¼ 0:75 for silicone oil. The

contact line is unstable to fingering for � � �c and stable for

� > �c, though the model may not be valid above �c since

�� 1 is violated. Modeling the contact line when H&R
requires either allowing a thicker film relative to the cylinder

radius, such as the model proposed by Craster and Matar,32

or including inertial effects, such as the model proposed by

Ruyer-Quil et al.,33 which we leave for a future study.

Agreement is excellent between the model and experi-

mental data for the wave number (i.e., number of fingers)

and wavelength of the fingering pattern that forms along the

contact line for the range of cylinders and fluids examined in

this study.
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