
Reactive, Generative, and Stratified Models

of Probabilistic Processes

Rob van Glabbeek
CWI

P.O. Box 4079
1009 AB Amsterdam

The Netherlands
robvg@cwi.nl

Bernhard Steffen
Aarhus University

Datalogisk Afdeling
Ny Munkegade 116 - 8000 Aarhus C

Denmark
bus@daimi.dk

1 Introduction

In the reactive model [Pnu85) of classical concurrency

theory, a process reacts to stimuli presented by its en­

vironment. A mechanistic view of the reactive model

has been given by Milner [Mil80) in terms of button

pushing ezperiments. The environment or observer ex­

periments on a process by attempting to depress one

of several buttons that the process possesses as its in­

terface to the outside world. The experiment succeeds

if the button is unlocked and therefore goes down; oth­

erwise the experiment fails. In response to a successful

experiment, the process makes an internal state tran­

sition and is then ready for further experimentation.

The reactive model has been adopted by Larsen

and Skou [LS89) for probabilistic processes: a button­

pressing experiment succeeds, with probability 1, or

else fails. If successful, the process makes an internal

state transition according to a probability distribution

associated with the depressed button.

In the probabilistic case, it is interesting to consider

a more "probabilistic" form of experimentation we call

the generative model. In this setting, an observer may

attempt to depress more than one button at a time.

•Research supported by NSF Grant CCR-8704309.

CH2897-7/90/0000/0130$01.00©1990 IEEE no

Scott A. Smolka*
Department of Computer Science

SUNY at Stony Brook
Stony Brook, NY 11794-4400

USA
sas@sbcs.sunysb.edu

Chris M. N. Tofts
LFCS

University of Edinburgh
Edinburgh EH9 3JZ

Scotland
cmnt@ljcs.ed.ac. uk

Now the process is more or less on equal footing with

its environment, and will decide, according to a pre­

scribed probability distribution, which button if any

will go down. In :response to a successful outcome, this

same probability distribution, conditioned by the pro­

cess's choice of button, will govern the internal state

transition made by the process.

For example, consider the reactive process P and

the generative process Q given by:

P= ta+ia.(a+b)+ b.c

Q =~a+ ~a. na+ ~b) + ~b.c

P and Q have as semantics the probabilistic labeled

transition systems depicted in Figure 1. For P, an

a- or b-experiment will succeed with probability 1,

whereas a c-expe:riment will fail. In the case of an a­

experiment, P will branch left with probability t and

right with probability i· Note that no information is

given about the relative probability of performing an

a-action versus a b-action in P's initial state.

For the generative process Q, if the observer simulta­

neously attempts to depress the a and b buttons, Q will

unlock its a-button with probability i and its b-button

with probability l- In the former case, Q will branch

left with probability t and right with probability ~,

c[l]

Q

I
6

Figure 1: Reactive process P and generative process Q.

which is precisely P's reaction to an a-experiment. In

fact, for any single-button ezperiment, P and Q behave

the same. Thus Q contains strictly more information

than P, and, in a broader sense, the reactive model is

an abstraction of the generative model.

In this paper we also consider the stratified model of

probabilistic processes, which captures the branching

structure of the purely probabilistic choices made by a

process. For example, consider an operating system in

which there are n processes to be multiprogrammed.

One of these is the garbage collector which requires

exactly one third of the CPU cycles to function prop­

erly. The other n - 1 processes are user processes and

should equally share the remaining two thirds of the

CPU. For the case n = 3, a plausible specification of

a scheduler for these processes would be

Sc = /fax (ia.X + ib.X + ic.X)

where the action a identifies the garbage collector, and

b and c the user processes. But consider the restric­

tion context in which user c is denied further access to

the machine. What would happen to its share of the

CPU? Because of the symmetry in the above specifi­

cation, we would naturally arrive at the expression

fizx(ta.X + tb.X)

Now, however, the garbage collector is granted one half

of the CPU which is different from our original intent.

An exact specification of the scheduler can be obtained

through the use of nested expressions of probabilistic

choice:

Sc'= fizxna.X + Htb.X + ~c.X))

which in the stratified model, yields the leftmost p:rob­

abilis;ic labeled transition system of Figure 2. If user

c were now denied access we would obtain

fizx(la.X + ~b.X)

as desired. Thus, in the stratified model, the intended

relative frequencies are preserved in a level-wise fash­

ion in the presence of restriction.

Note that the probabilistic h1.beled transition

of Sc' in the generative model is simply the one

of Figure 2. Thus, in the generative model, Sc is (1m­

fortunately) equivalent to Sc1 • We shall see that, in

a broader sense, the generative model is an abstra.c·

tion of the stratified model, in which the branching

structure of probabilistic choices has been "flattened."

The extremal case of nested probabilistic choice in

the stratified model, in which zero probabilities a.re

permitted, yields a general notion of proceu ,.,.,,,,,..,.,,,

For example, the expression

lP + O(lQ +OR)

gives priority to process P over Q and R, and priority

to Q over R. Thus process R can only be executed in a.

restriction context that excludes P and Q. Zew prob­

abilities are not considered in this paper, but their role

in modeling priority is examined carefully in [SS90].

131

Summary of Technical Results

We will be working within the framework of PCCS,

a specification language for probabilistic processes in­

troduced in [GJS90]. PCCS is derived from Milner's

SCCS [Mil83] by replacing the operator of nondeter­

ministic process summation with a probabilistic coun­

terpart. Several PCCS expressions have appeared

above, which should give the flavor of the language.

For each of the three models we present the follow­

ing:

• a structural operational semantics of PCCS, given

as a set of inference rules in the style of Plotkin

[Plo81] and Milner [Mil89J. For ea.eh model,

these inference rules constitute a semantic map­

ping from the set of PCCS process expressions,

Pr, to a particular domain of probabilistic l.a.beled

transition systems. We denote these mappmgs as

t.pR, t.pG, and i.ps, respectively. (As discussed in

Section 3, the summation and relabeling opera­

tors of PCCS are not compatible with the reac­

tive model. Therefore, l.f'R applies only to a sub­

language PCCSR of PCCS, in which summations

c

x

Figure 2: Stratified and generative transition systems of Sc'.

are both probability- and action-guarded, and re­
labeling is excluded.)

• a notion of bisimulation semantics. In [LS89),
Larsen and Skou introduced probabilistic bisim­

ulation, a natural and elegant extension of st:rong
bisimulation [Par81, Mil83) for reactive processes.
We likewise define probabilistic bisimulation on
generative and stratified processes. In each
model, the largest probabilistic bisimulation (un-

der set inclusion), denoted ~. :!., and !, respec­
tively, determines the model's bisimulation se­
mantics.

• We prove that ~is a congruence with respect to

PCCSR, and ~ and !., are congruences with re­
spect to PCCS.

We then inter-relate the models, ultimately showing
that they form a hierarchy: the generative model is
an abstraction of the stratified model, and the reac­
tive model is an abstraction of the generative model.
This reflects the stepwise reduction of "observational
power"; i.e. starting from the stratified model, we first
abstract from the probabilistic branching structure,
and then from the relative probabilities among differ­
ent actions. We proceed as follows:

• We add to the generative and stratified oper­
ational semantics inter-model abstraction rules,

which allow the inference of reactive probabilis­
tic transitions f:rom generative ones; and, likewise,
the inference of generative probabilistic transi­
tions from stratified ones. These rules determine
mappings between domains of probabilistic la­
beled transition systems, and are denoted as f.PGR
and f.PSGi respectively.

• We obtain the following commutativity results,

which establish the hierarchy among the models.
For any PCCSR expression P and restriction-free
PCCS expression Q,

132

<i'R(P)
<i'G(Q)

= 'f'GR(f.PG(P))
'f'SG('f's(Q))

and

Additionally, we show that the latter commuta­
tivity result does not hold in the presence of re­
striction.

• We then show that the equivalence induced on
the stratified (generative) model via abstraction
to the generative (reactive) model is not a congru­
ence with respect to PCCS. This demonstrates the
need for refining the bisimula.tion semantics when
moving to a less abstract model. More precisely,
we exhibit a pair of PCCS processes P, Q and a
context C[) such that

'PsG('f's(P)) ~ 'f'sG('f's(Q)) and

<psa('Ps(C[P])) !J, 'f'sa(i,os(C[Q)))

Similarly for the reactive vs. generative case.

The interdependencies between the different mod­
els are summarized in Figure 3. Here the upper part
reflects the commutativity results, and the dashed ar­
rows below indicate the bisimulations that are induced
on the stratified (generative) model via abstraction to
the generative (reactive) model.

We conclude the pa.per with an interesting open

problem concerning an equivalence relation ~ (mized

bisimulation) that, in terms of its distinguishing

strength, falls strictly between ~ and !, and is still
a congruence in the stratified model. We conjecture

that ~ is the largest congruence contained in 2.

Related Work

Larsen and Skou [LS89] have examined the reac­
tive model in the setting of testing. They exhibit a
testing algorithm that, with probability 1 - 1:, where
€ is arbitrarily small, can distinguish processes that
are not probabilistically bisimilar. Bloom and Meyer

/ _Jt<atilior Modol

Stratified
Bisimulation

Figure 3: Interdependencies between the models.

[BM89] further show that ifnondeterministic bounded­

branching processes P and Q are bisimilar then there
. '
is an assignment of probabilities to the edges of P and

Q, yielding reactive processes P' and Q' such that P'

and Q' are probabilistically bisimilar; and P' and Q'

have the same probability of producing a given out­

come under every test.

Christoff [Chr89] also considers the testing of prob­

abilistic processes. He proposes three probabilistic

testing equivalences and outlines an algorithm for the

verification of these equivalences. Finally, Jones and

Plotkin [JP89] investigate a probabilistic powerdomain

of evaluations which they use to give the semantics of

a language with a probabilistic parallel construct.

2 Syntax of PCCS

As in SCCS, the atomic actions of PCCS form a multi­

plicative structure (Act,·) that is generated freely from

the set A of particulate actions. Unlike SCCS, where

Act is an abelian monoid, we assume neither commu­

tativity nor associativity for action product (·). Thu;

all elements of Act are of the form a or (a:,,8), where

a E A and a:, ,8 E Act. One can think of the atomic

action (a:,,8), which we sometimes write as a{J, as the

simultaneous ordered occurrence of actions a and {3.

As discussed in Section 3, the free structure of our

action algebra is necessary to be able to define syn­

chronous product in the reactive model. For any

SCCS-like action monoid or group, the corresponding

synchronization merge can be expressed in our calcu­

lus by a combination of product and relabeling. For

example, the group structure of SCCS can be obtained

through relabelings like: (a, a) -+ 1 and (a, a) -+ 1 ,

where 1 is the unit or idle action of SCCS.

133

Let X be a variable, A a subset of Act, and / :

Act -. Act. The syntax of PCCS is given by:

E ::= 0 I X I a.E I 2: [pi] E, where Pi E (0, 1],
iEI

~e1Pi = 1 I ExF I EIA I E[f] I /izxE

An expression having no free variables is called a

proceas, and Pr is the set of all PCCS processes. In­

tuitively, 0 is the zero proceas having no transitions,

while a . E performs action a with probability 1 and

then behaves like E. The expression :l:[Pi] Ei offers

a probabilistic choice among its constituent behaviors

Ei. E x F represents synchronized product, and the

restricted expression E I A can perform actions only

from the set A. Finally, E[f] specifies a relabeling of

actions, and fizx E defines a recursive process.

For this paper, all summation expressions are re­

quired to be finite. Also, we write the binary version

of process summation as [p] E + [1 - p] F, and often

omit the square brackets around the probabilities.

3 The Reactive Model

The reactive model of probabilistic processes was in­

troduced by Larsen and Skou in [LS89]. In this section,

we consider the reactive model within the context of

PCCSR, a sublanguage of PCCS tailored to describing

reactive processes. We begin by presenting the reactive

operational semantics for PCCSR that defines a prob­

abilistic transition system for every PCCSR process.

We then equip the model with a notion of probabilistic

bisimulation, also due to Larsen and Skou, and show

that the resulting equivalence relation is a congruence

with respect to PCCSR.

The syntax of PCCSR is identical to that of PCCS

except for:

1. Summation expressions are required to be both

probability- and action-guarded; i.e., they are of

the form:

L [p,} a.;. Ei where ai E Act, P• E (0, 1} and
iEI

I:iEI Pi= 1

2. The relabeling operator is eliminated.

The first restriction is a consequence of the reactive

viewpoint (see Section 1): for each action symbol a,

a reactive process either possesses no a-transitions, or

else the sum of the probabilities of all a-transitions is

1. This would immediately suggest a syntax for sum­

mation expressions of the form:

L L [p.;;] a.;. E.;j such that Vi E I, I: ·eJ P•i = 1
iEljEJ 3

However, such summations are not syntactically valid

in PCCS, as the syntax of PCCS is inherently gener­

ative. Therefore, instead, we resort to PCCS summa­

tions of the form E = 2:[p.;]a.;. E0, and the probability

that E will perform the transition encoded by the ith

summand will be p.;, conditioned by the assumption

{ ai}· For example, the expression ta.X + ~a.Y + tb.Z

has an a-transition to X with associated probability ~,

an a-transition to Y with associated probability i 1 and

a b-transition to Z with associated probability 1.

We note that it is possible to provide a reactive se­

mantics to general PCCS summations. However, the

resulting models lack key algebraic properties such as

substitutivity in the bisimulation semantics, or com­

mutativity from the generative model.

The second restriction on the syntax of PCCSR is

due to an inherent incompatibility between the oper­

ation of relabeling and the reactive viewpoint. For

example, consider process P = ~a.X + ~b.Y. P has
a probability-! a-transition to X and a probability-!

b-transition to Y. However, ifthe relabeling that maps

a to itself and b to a is applied to P, then we end up

with a "nonsensical" object having two probability-!

a-transitions. Relabeling could be defined in the reac­

tive model if an appropriate normalization procedure

were applied. But, in this case, we would lose substi­

tutivity and commutativity as for general summation.

Of course, injective relabelings can be added without

problem.

134

3.1 Operational Semantics of PCCSn.

The reactive operational semantics of PCCSR is given

in Figure 4 as a set of inference rules. These rules col­

lectively define the semantic mapping '{JR from PrR,

the dosed expressions of PCCS R, to the domain of re­

active probabilistic labeled transition systems. (This

domain will be defined more formally in Section 3.2.)

Reactive transitions are of the form

or[p]
p c___. P'

meaning that P, with probability p, can perform an

a-transition to become P'.

The first rule, which has no premise and is thus

an axiom, defines the probabilistic transitions of a

probability- and action-guarded summation (hence­

forth referred to simply as a "guarded summation").

Here, .,., is the normalization factor used to compute

the conditional probabilities of the guarded sum under

the assumption { ai}. Note that action-prefixing is now

a special case of guarded sum in which the index set I
is of cardinality 1. The rest of the rules are straight­

forward adaptations of their SCCS counterparts.

Unlike SCCS, all probabilistic transitions are in­
dexed. The purpose of the indices is to distinguish

different occurrences of the same probabilistic transi­

tion, and are constructed so that every probabilistic

transition of an expression has a unique index. (The

indices will be used in the next section to define cu­

mulative probability distributions.) The following ex­
ample is illustrative:

artJ
([iJa. 0 + [ila. 0) c___.1 0

a(t]
([iJa. 0 + [tla. 0) c___.2 0

3.2 Reactive Bisimulation

We now consider reactive bisimulation, a notion of

probabilistic bisimulation for reactive processes due to

Larsen and Skou [LS89]. By definition, all reactive

bisimulations are equivalence relations. Intuitively,

two processes P,Q are probabilistically bisimilar in

the reactive model if, for each action symbol, they de­

rive reactive bisimulation classes with equal cumula­

tive probability.

To define reactive bisimulation, we first need to

define the cumulative probability distribution function

(cPDF) which computes the total probability by which

a process derives a set of processes. Using 'P as the

a[p] J3[q] aJ3 [p·q]
E c:__., E'

'
F

a[p]

c:__.i F' ExF (i,;) E' x F'

a[p]
E ~A c__., E' ~A E c:__.i E' (o: EA)

a[p]
E{fizxE/X} c__., E'

Figure 4: Reactive Operational Semantics of PCCSR

powerset operator and adopting the convention that
the empty sum of probabilities is 0, we have:

Definition 1 (Reactive cPDF) µR: (PrR x Act x
P(PrR))---+ [O, 1] is the total function given by: Vo: E
Act, \j p E PTR, v s ~ PTR,

a[p,]

µR(P, o:, S) = L ~Pi IP c___,.i Q and Q ES}

For an equivalence relation 'R over PrR, we write
PT R/'R to denote the set of equivalence classes induced
by 'R. Reactive bisimulation can now be defined as
follows:

Definition 2 ([LS89]) An equivalence relation 'R C
PTR x PTR is a reactive bisimulation if (P,Q) E ii
implies: VS E PrR/'R, Vo: E Act,

µR(P, o:, S) = µR(Q, o:, S)

Two processes P, Q are reactive bisimulation equiva­

lent (written P !!:, Q) if there ezists a reactive bisim­
ulation n such that (P, Q) E 'R.

We will sometimes consider reactive bisimulation
equivalence of transition systems rather than expres-

sions, e.g., IPR(P) !!:, IPR(Q). Definition 2 can be used
with no change in this case.

Similar to the case of classical bisimulation, if 'R1
and n2 are reactive bisimulations, then so is their tran­
sitive closure (R1 U'R2t. Furthermore, reactive bisim­
ulation equivalence is the largest reactive bisimulation,

i.e.

!!:, = LJ { R I n is a reactive bisimulation}

and can be found by a straightforward adaptation of
the fixed-point iteration technique of [Mil89].

Like strong bisimulation does for SCCS or CCS
reactive bisimulation equivalence provides a comp;
sitional notion of semantics for PCCSR that is consis­
tent with the operational semantics defined in the last
section. Specifically:

Theorem 1 (Congruence) For P, Q E p.,.R:

P !!:, Q implies V PCCSR contezts C[] : C[P] !!:, C[Q]

Proof: The proof is by induction on the structure of
the context. The case for the empty context is triv­
ial. Thus, it :remains to investigate only the top-most
operator of the context. The proof for product is essen­
tially the same as the one given in Section 4.2 for the
generative model. The case of restriction is straight­
forward, and for fiz, the proof is an adaptation of the
same case in the congruence proof for strong bisimu­
lation [Mil83].

We are left with the case of guarded summation.

135

Let C[] be a summation context in which exactly one
summand E, is replaced with a hole. It is sufficient

to show that P !!:, Q implies C[P] !!:, C[Q] . Let (P, Q)
belong to the reactive bisimulation 'R0. It is enough
to show that the reflexive, symmetric and transitive
closure 'R of 'R1 = 'Ro U {(C[P], C[Q])} is a reactive
bisimulation. This is straightforward. D

We close this section by pointing out how the cu­
mulative PDF µR can be used to define the semantic
mapping l.(JR from PCCSR to the domain of reactive
transition systems. In particular, i()R is of the form

such that t.pR(P) represents the probabilistic transition
system having start state P and (cumulative) proba­
bility µ R (P, o:, { Q}) of transiting to state Q via action

o:. Note that the cumulative PDF provides us with
a transition-system semantics in which the indices of
the previous section, as defined by the inference rules
of Figure 4, have been abstracted away.

4 The Generative Model

In contrast to the reactive model, which is defined only
over the sublanguage PCCSR of PCCS, the generative
model is defined over full PCCS. In this section, we
provide PCCS with a generative operational seman­
tics. We then extend the notion of reactive bisimula­
tion to the generative case and show that the resulting
equivalence is a congruence with respect to PCCS.

4.1 Operational Semantics of PCCS

The generative operational semantics of PCCS is given
in Figure 5. We use a different kind of arrow (non­
hooked) to distinguish generative transitions from re­
active ones. As in the reactive case, generative tran­
sitions are indexed to distinguish multiple occurrences
of the same probabilistic transition.

With the exception of restriction, all rules a:re
straightforward adaptations of their SCCS counter­
parts. The restriction rule defines the probabilistic
transitions of E ~A in terms of the conditional prob­
abilities of E under the assumption A. In this rule,
the function VG computes the generative normalization
factor such that vG(E, A) is the sum of the probabili­
ties of the transitions of E labeled by symbols from A.
Using -0,} as multi-set brackets, the formal definition
of VG is given by

To illustrate the generative operational semantics,
consider the expression

E =(a. 0) x ([~]b. X +[~Jc. Y + aJO)

We have:

(a,b)[!]
E ----+ci,t.1) 0 x X

(a,c)[tl
E ----->c1,2.1) 0 x Y

As llG(E,{(a,b)}) =~'we also have:

(a,b)[l]
E l{(a, b)}--4(i,t.1) (0 x X) l{(a,b)}

136

A generative process is said to be stochastic if the
sum of the probabilities of its derivations is 1. Other­
wise, when this sum is strictly less than 1, the process
is said to be substochastic, and therefore possesses a
non-zero probability of deadlock. With the exception
of :restriction, the inference rules of Figure 5 preserve
stochasticity: if the processes in the assumptions are
stochastic, then so are the defined processes. In the
case of restriction, the defined process may have no
derivations at all.

The normalization factor VG(E, A) used in the re­
striction rule of Figure 5 is such that a non-zero sub­
stochastic process placed in a restriction context be­
comes stochastic. Alternatively, the relative probabil­
ity of deadlock in a substochastic process can be pre­
served by normalizing by the quantity r = VG(E, A)+
1-vG(E, Act). The term 1-vG(E, Act) represents the
probability of deadlock in E. To illustrate, we would
have in the above example that VG(E, Act) = i, r = i,
and thus:

(a,b)[tJ
E l{(a,b)}---+(1 ,i.1) (0 x X) ~{(a,b)}

4.2 Generative Bisimulation

The extension of reactive bisimulation to the gener­
ative model is straightforward. The definition of the
generative cPDF µG is the same as Definition 1 ex­
cept that it is defined over Pr and in terms of indexed
generative transitions. Likewise, the definition of a

generative bisimulation and of £ are the same as in
Definition 2, except that they are defined over Pr and
in terms of µG. Also, the semantic mapping '-PG from
PCCS to the domain of generative transition systems
is defined exactly as t.p R.

Similar to the reactive case, £ is substitutitive in
PCCS. For an equivalence relation 1?. and a process P,
we write [P]'R. to denote the equivalence class induced
by 1?. of which Pisa member.

Theorem 2 (Congruence) For P, Q E Pr:

P £ Q implies V PCCS contezts C[] : C[P] £ C[Q]

Proof: Again, the proof is by induction on the struc­
ture of the context. We present the cases of product
and restriction.

Product:

a[l]
o:.E--+ 1 E

a[q]
Ei--+,, E'

a[p]
E--+i E' ,

a[p]
E--+i E'

p~.
J F' ==>

==>

(j EI)

aj3 [p-q]
ExF (i,i) E' x F'

a[p/?]
E\A i E' \A (a EA, r = va(E,A))

a[p]
E--+i E' E[f]

f(a)[p]
i E'[J] ==>

a[p] a[p]
E{fizxE/X}--+ i E' ==> fizx E--+ i E'

Figure 5: Generative Operational Semantics of PCCS

We show P f!. Q implies P x R f!. Q x R. Let

(P, Q) belong to the generative bisimulation 'R.0 •

It is enough to show that the reflexive closure 'R.

of

'R1 = { (P x R, Q x R) I (P, Q) E 'R0 , RE Pr}

is a generative bisimulation. First note that 'R.

is an equivalence relation. Now suppose (P x

R, Q x R) E R and µG(P x R, "(, [P' x R']'R.) =
r. Then, by the structure of Act and the fact

that [P' x R']'R. = [P']'R.o x R', we must have

µG(P, o:, [P']'R. 0) = p, µG(R, (3, R') = q, 'Y =
a · (3, and r = pq. But then, since P ~ Q,
µG(Q,o:,[P']'R. 0) = p and µG(Q x R,"'(,[P' x
R']-R-) = r. 'R. is therefore a generative bisimu­

lation.

Restriction:

We show P f!. Q implies PI' A :!, Q I' A, for A ~
Act. Let (P, Q) belong to the generative bisimu­

lation 'Ro. It is enough to show that the relation

R={(P\A,Qf'A) !(P,Q)E'Ro} U Idp?

is a generative bisimulation. This follows almost

immediately from the following fact, whose proof

is straightforward:

P f!. Q implies VA~ Act: VG(P, A)= VG(Q, A)

D

137

5 The Stratified Model

The treatments of the reactive and generative models

are extended here to the stratified case.

5.1 Operational Semantics of PCCS

The stratified operational semantics of PCCS is com­

prised of two types of transition relations: action tran­

sitions (as in SCCS) and probability transitions. Ac-

"' tion transitions are of the form P--+ Q. Probability

transitions are of the form P ~ Q, meaning that P,

with probability p, can behave as the process Q. This

separation of action and probability in the stratified

model permits the branching structure of the purely

probabilistic choices to be captured explicitly. The in­

ference rules for probability transitions appear in Fig­

ure 6; the rules for action transitions, being essentially

the same as in SCCS [Mil83), are omitted. Note, how­

ever, that there is no action rule for process summation

since, in the stratified model, the only choice mecha­

nism is probabilistic. This bi-structured approach to

operational semantics was (to our knowledge) first pre­

sented in [Tof90) to give a semantics for a timed version

of CCS.

The inference :rules for action and probability tran­

sitions define the semantic mapping <.ps from Pr to

the domain of stratified probabilistic labeled transition

systems. Such transition systems are stochastic in the

sense that for each non-deadlocked state, the sum of

the probabilities of its outgoing probability transitions

is 1. A state with a probability transition to a dead-

I: [p,] Ei Pi
1---+i E1

iEl

a 1
E--+ E' ==:} E i--+1 E

E
p

E' F
q F'

p·q E' xF1
f-->i '

1---+j ==:} E x F 1---+(i,j)

p
E' vs(E1 ,A) =j:. 0 E~A

p/11s(E,A)
E'~A E 1---+i , ==:}

E
p

1---+i E' ==:} E[f] ~. E'[f]

E{f i;e x EI X}
p

1---+i E' ==:} fi'zxE ~. E'

Figure 6: Stratified Operational Semantics of PCCS

locked state corresponds to a substochastic state in the

generative model.

Similarly to the reactive and generative cases, the

transitions defined in Figure 6 are indexed to dis­

tinguish multiple occurrences of the same probability

transition. Except for the second and fourth rules, all

of the inferences rules for probability transitions are

straightforward adaptations of their SCCS counter­

parts. The second rule is needed to avoid deadlock in

a synchronous product that is caused by a difference in

depth of the purely probabilistic branching structures

of the argument processes. For example, we do not

want (~ a.O + t b.O) x c.O to deadlock simply because

there does not exist a probability transition in the right

hand argument. The deadlock is avoided by the second

rule, which provides the missing !-transition.

The fourth rule deals with the restriction opera­

tor, and expresses the probability transitions of E ~A
in terms of the conditional probabilities of E under

the assumption A. Intuitively, E ~A behaves like

E, where all probability transitions to subexp:ressions

that necessarily :require the execution of a restricted

action are eliminated. The probabilities associated

with these transition are evenly distributed among the

remaining probability transitions.

The function vs calculates the stratified normaliza­
tion factor. The condition vs (E', A) f. 0 in the rule

premise means that derivative E' of E is capable of

performing an action transition from the set A of per­

mitted actions.

{

a
1 if E--+ , a E A

vs(E, A)= O if E~ , f3 (/:.A; else

I:, -OP• I E ~i E, , vs(E;, A) f. O}

To illustrate the inference rule for restriction, con-

138

sider the process

P = l a.O + i (~ b.0 + ~ c.O)

In the following, P is "evaluated" with respect to

some :relevant restriction contexts, resulting in the

restriction-free processes on the right-hand side.

P ~{b, c} """
P~{a,c}"""
p ~{c} """

l(~b.O+tc.O)
!a.O + i lc.O
1 {l c.O)

As in the generative case, the inference rule for re­

striction can be extended in order to preserve the rela­

tive probability of deadlock in a substochastic process.

This is accomplished by augmenting the definition of

vs with the clause

vs(E, A)= 1 if E f/--+ and E f-+

5.2 Stratified Bisimulation

Stratified bisimulation is similar to reactive and gen­

erative bisimulation in that processes are required to

derive stratified bisimulation equivalence classes with

equal cumulative probability. However, the separa­

tion of probability and action in the stratified opera­

tional semantics is reflected in the definition of strati­

fied bisimulation.

To define stratified bisimulation, we need to: (1)
define the function that computes the total probabil­

ity by which a process can behave the same as as any

process in a set of processes (the technique is analo­

gous to the one in Definition 1, and thus the details

are omitted); (2) lift, in the obvious way, the action

relations to sets of derivative processes. The stratified

cumulative PDF µ5 encorporates both (1) a.nd (2) in
an integrated fashion. In particular, µ 5 is of the form

µs:(Prx(Act U {*})x'P(Pr))-+[0,1]

where *is a dummy symbol used to mark probability
transitions. That is, for a E Act, µ 5 (P, a, S) E { 0, 1}
indicates whether or not P has an a-transition to some
process in S. Otherwise, µs(P, *• S) E [O, l] specifies
the total probability by which P may behave the same
as any process in S.

Definition 3 An equivalence relation n C Pr x Pr
is a stratified bisimulation if (P, Q) E 'R, i;;;_plies 't/S E
Pr/n, Va E Act u { * },

µs(P, a, S) = µs(Q, a, S)

Two processes P, Q are stratified bisimulation equiva­
lent (written P ! Q) if there e:iists a stratified bisim­
ulation n such that (P, Q) ER.

Theorem 3 (Congruence) For P, Q E P1':

P ! Q implies 't/ PCCS conte:its C[] : C[P] ! C[Q]

Proof: As before the proof is by induction on the
structure of C. This time, however, each case is broken
down into two subcases: cumulative probability tran­
sitions and action transitions. The proofs for the prob­
ability transitions are similar to the ones presented in
Theorems 1 and 2. The proofs for the action transi­
tions are similar to the standard SCCS proofs. D

6 Interrelating the Models

In this section, we show by means of the abstraction
function 'PGR, that for PCCSR expressions, the reac­
tive model is an abstraction of the generative model.
Likewise, by means of the abstraction function 'PsG,
we show that for restriction-free PCCS expressions,
the generative model is an abstraction of the strati­
fied model. These abstraction functions are defined in
terms of inter-model abstraction rules (IMARGR and
IMARsG), which allow the inference of reactive transi­
tions from generative ones, and generative transitions
from stratified ones. The situation is summarized in
Figure 3 of Section 1.

6.1 The Generative to Reactive Ab­
straction

Let E, E' E p,,. be closed expressions of PCCS. Then
IMARGR is defined by

E ~ i E' ==> E a[p/va(E,{a})J E'

This rule uses the generative normalization function
to convert generative probabilities to reactive ones,
thereby abstracting away from the relative probabil­
ities between different actions (see also the discussion
in Section 3). We can now define 'PGR('PG(P)) as the
reactive transition system that can be inferred from
P's generative transtion system via IMARGR·

Lemma 1 For E, E' E p,,.R and action a E Act,

1. µG(E,ex,E')=p>O, implies
µR(E, ex, E') = p/vG(E, {ex}) and

2. µG(E, ex, E') = 0 implies µR(E, ex, E') = 0

Proof: By structural induction over E. The cases of
interest are guarded summation and product. For the
former, the key observation is that,,.,= llG(E, {ai}),
where 1'i is the normalization factor for the ith sum­
mand in the reactive axiom for guarded summation
(Figure 4).

For product, the result hinges on the fact that, for
E = F x H and o:, /3 E Act,

139

vG(F, {a})· vG(H, {.B}) = llG(E, {(a, ,8)})

0

As an immediate consequence of Lemma 1 we have:

Theorem 4 {Commutativity) For PE PrR

Finally, we show that the equivalence induced on
the generative model by reactive bisimulation is not a
congruence. Consider the PCCS processes

P = ~a. 0 + ib. c. 0 Q = ~a. 0 + ~b. c. 0

For P,Q we have

i.pGR('PG(P)) ~ 'PGR('PG(Q))

However, the same is not true for C(P] and C[Q],
where C is the relabeling [a --+ a, b --+ a, c --+ c].
In particular, µG('PGR(<pG(C[P])), a, [c. OJ~) = i and
µG('PGR('PG(C[Q])),a,[c.0]~) = t·

6.2 The Stratified to Generative Ab­
straction

Let E, E' be PCCS expressions. Then IMAR5a is

given by

Eo .X..:.,. · · · A· 1.1 'In

E a[p] E' ==> ----+ i

a
En--+ E'

where p = PoP1 · · · Pn 1 i = ioi1 ···in
and (n = OV En-1 #En)

The condition (n = 0 V En-1 f. En) excludes paths

that contain occurrences of a probability-! transition

from an expression that can perform an a-action.

These probability transitions are artificial in the sense

that they have only been introduced for technical pur­

poses (i.e., to deal with synchronous product).

IMAR5a has the effect of "flattening" trees of prob­

ability transitions with action transitions at the leaves,

into a single-level structure of generative transitions.

Indeed, we show that the generative transition system

of a restriction-free PCCS process P is isomorphic to

the generative transition system that can be inferred

from P's stratified transition system via IMAR5a. For

example, let P = la. 0 + H tb. 0 + tc. 0). Then, by

IMAR5a
b[tl

p--+ 2·1 0
e[tl

p--+ 2·2 0

Except for the transition indices, these are precisely

the transitions of P in the generative model.

To derive the stratified-to-generative commutativ­

ity result, we need to extend the stratified cumulative

PDF from single transitions to paths of transitions: for

n 2: O,

µ5(EoE1···En,*)= II µ5(Ei-l1*1{Ei})
19:$n

By convention, the empty product is 1. Second, we

define the notion of a path, possibly with probability

transitions, from E to E' ending in an a-transition,

a: E Act.

Definition 4 For expressions Eo, Ei, ... , En, E' and

action a E Act,

Eo ···En E PATHS(E, a:, E') iff
a

(E = Eo) /\ (n = 0 V En-1 #En)/\ En---+ E'

As for IMAR5a, the second conjunct in the defini­

tion excludes paths that contain artificial probability-1

transitions.

140

Lemma 2 For restriction-free PCCS expressions

E, E' and action a E Act 1

µG(E, a, {E'}) = I: µ5(11", *)
.,..ePATHS (E,a,E')

Proof: The proof is based on the algebraic properties

of µG and PATHS, which can be specified equation­

ally. For example, the equations for summation are:

µG(l: fpi]E.,a,{E}) = 2=Pi ·µc(E,,a:,{E})
~I ~I

PATHS(l: fpi]E,, a, E) =
iEI

LJ { (2:: fp,]Ei) PIPE PATHS(E., a, E)}
i iEI

For product we have

µc(E x F,-y,{E' x F'})

µG(E,a,{E'}) ·µG(F,,B,{F'})

PATHS(E x F,-y, E' x F') =

PATHS(E, a, E') x PATHS(F,,B, F')

where a· /3 = "Y· Together with similar equations for

the other operators and with the defining properties

of µ5, a proof by structural induction over E is now

straightforward. D

As an immediate consequence of this lemma, we ob­

tain the following commutativity result:

Theorem 5 (Commutativity)
Let P E Pr be a restriction-free PCCS process. Then

'P5G('Ps(P)) = 'Pc(P)

Theorem 5 does not hold for arbitrary PCCS pro­

cesses. Consider the process

P = la. 0 + H tb. 0 + tc. 0) ~ {a, b}

'PG(P) is equal to ~a. 0 +~b. 0 while <p5c(cp5(P)) is

equal to la . 0 + jb. 0.

Finally, we show that the equivalence induced

on the stratified model by generative bisimula­

tion is not a congruence. Consider processes

Sc and Sc' of Section 1 (the scheduler specifica-

tions). We have <p5c(ip5(Sc)) £ 'P5G('Ps(Sc')) but,

as discussed in Section 1, <psc(<p5(Sc ~{a, b})) i
'PsG('Ps(Sc' ~{a, b})).

7 Conclusions

In this paper we have examined three models of prob­
abilistic processes. In so doing, we have seen that

generative bisimulation (!!.,) is not a congruence in

the stratified model, while stratified bisimulation (!-)
is. However, !- is not the largest congruence con­

tained in !!., (it is too fine). For example, consider

P = [l][l]a and Q = [l]a. <ps(P) 1' <ps(Q) yet

<psc(i,os(C[P])) £ <psc(c,os(C[Q])), for any context C[].

It is interesting, therefore, to ask what is the largest

congruence contained in £. We can show that, in
terms of its distinguishing strength, the following

equivalence relation falls strictly between £ and !-,
and is still a congruence in the stratified model.

Definition 5 An equivalence relation 'R ~ Pr x Pr
is a mixed bisimulation if (P, Q) E 'R implies VS E
Pr/n,

µs(P,*,S)=µs(Q,*,S) and

Va. E Act, µ~(P, a:, S) = µ~(Q, a., S)

where µ(; (for expressions with restriction) is defined
in the style of the rhs of the formula in Lemma 2.
Two processes P, Q ar·e mixed bisimulation equivalent

(written P ~ Q) if there exists a mixed bisimulation
'R such that (P, Q) E 'R.

Mixed bisimulation essentially allows an a:­
transition in one process to be matched by an a­

transition preceded by a number of probability-I tran­
sitions in the other process (the second clause). At the
same time, probability-I transitions may be significant
in a product context, and must therefore be taken into
account (the first clause). We close with the following:

Conjecture (Full Abstraction) In the stratified
M . d. G

model, ,...., is the largest congruence contame m ""·

Acknowledgements: The authors would like to
thank Kim Larsen and Robin Milner for valuable dis­
cussions on models of probabilistic processes. They are
also grateful to Chi-Chang Jou and Yuh-Jzer Joung for
their help in preparing this document.

References

[BM89] B. Bloom and A. R. Meyer: . A_ remark on
bisimulation between probab1hstic processes.

In Meyer and Tsailin, editors, Logik at Batik,
Springer-Verlag, 1989.

[Chr89] Ivan Christoff. Distinguishing probabilistic
processes through testing. In Proceedings of
Nordic Workshop on Program Correctness,
Uppsala, Sweden, 1989.

[GJS90] A. Giacalone, C.-C. Jou, and S. A. Smolka.
Algebraic reasoning for probabilistic concur­
rent systems. In Proceedings of Working Con­
ference on Programming Concepts and Meth­
ods, IFIP TC 2, Sea of Gallilee, Israel, April
1990.

[JP89] C. Jones and G. D. Plotkin. A probabilistic
powerdomain of evaluations. In Proceedings
of 4th Annual Symposium on Logic in Com­
puter Science, 1989.

[LS89] K. G. Larsen and A. Skou. Bisimulation
through probabilistic testing. In Proceedings
of 16th Annual ACM Symposium on Princi­
ples of Programming Languages, 1989.

[Mil80] R. Milner. A Calculus of Communicating Sys­
tems. Volume 92 of Lecture Notes in Com­
puter Science, Springer-Verlag, 1980.

[Mil83] R. Milner. Calculi for synchrony and

141

asynchrony. Theoretical Computer Science,
25:267-310, 1983.

[Mil89] R. Milner. Communication and Concurrency.
International Series in Computer Science,
Prentice Hall, 1989.

[Par81] D. M. R. Park. Concurrency and automata on
infinite sequences. In Proceedings of 5th G.J.
Conference on Theoretical Computer Science,
pages 167-183, Springer-Ve:rlag, 1981.

[Plo81] G. D. Plotkin. A Structural Approach

[Pnu85]

[SS90]

[Tof90]

to Operational Semantics. Technical Re­
port DAIMI FN-19, Computer Science De­
partment, Aarhus University, 1981.

A. Pnueli. Linear and branching structures in
the semantics and logics of reactive systems.
In Proceedings of 12th !GALP, pages 15-32,
Springer Verlag, 1985.

S. A. Smolka and B. Steffen. Priority as ex­
tremal probability. 1990. To appear.

Chris M. N. Tofts. Proof Methods and Prag­
matics for Parallel Programming. PhD thesis,
LFCS, University of Edinburgh, 1990.

