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1 Introduction 

In the reactive model [Pnu85) of classical concurrency 

theory, a process reacts to stimuli presented by its en­

vironment. A mechanistic view of the reactive model 

has been given by Milner [Mil80) in terms of button 

pushing ezperiments. The environment or observer ex­

periments on a process by attempting to depress one 

of several buttons that the process possesses as its in­

terface to the outside world. The experiment succeeds 

if the button is unlocked and therefore goes down; oth­

erwise the experiment fails. In response to a successful 

experiment, the process makes an internal state tran­

sition and is then ready for further experimentation. 

The reactive model has been adopted by Larsen 

and Skou [LS89) for probabilistic processes: a button­

pressing experiment succeeds, with probability 1, or 

else fails. If successful, the process makes an internal 

state transition according to a probability distribution 

associated with the depressed button. 

In the probabilistic case, it is interesting to consider 

a more "probabilistic" form of experimentation we call 

the generative model. In this setting, an observer may 

attempt to depress more than one button at a time. 
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Now the process is more or less on equal footing with 

its environment, and will decide, according to a pre­

scribed probability distribution, which button if any 

will go down. In :response to a successful outcome, this 

same probability distribution, conditioned by the pro­

cess's choice of button, will govern the internal state 

transition made by the process. 

For example, consider the reactive process P and 

the generative process Q given by: 

P= ta+ia.(a+b)+ b.c 

Q =~a+ ~a. na+ ~b) + ~b.c 

P and Q have as semantics the probabilistic labeled 

transition systems depicted in Figure 1. For P, an 

a- or b-experiment will succeed with probability 1, 

whereas a c-expe:riment will fail. In the case of an a­

experiment, P will branch left with probability t and 

right with probability i· Note that no information is 

given about the relative probability of performing an 

a-action versus a b-action in P's initial state. 

For the generative process Q, if the observer simulta­

neously attempts to depress the a and b buttons, Q will 

unlock its a-button with probability i and its b-button 

with probability l- In the former case, Q will branch 

left with probability t and right with probability ~, 
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Figure 1: Reactive process P and generative process Q. 

which is precisely P's reaction to an a-experiment. In 

fact, for any single-button ezperiment, P and Q behave 

the same. Thus Q contains strictly more information 

than P, and, in a broader sense, the reactive model is 

an abstraction of the generative model. 

In this paper we also consider the stratified model of 

probabilistic processes, which captures the branching 

structure of the purely probabilistic choices made by a 

process. For example, consider an operating system in 

which there are n processes to be multiprogrammed. 

One of these is the garbage collector which requires 

exactly one third of the CPU cycles to function prop­

erly. The other n - 1 processes are user processes and 

should equally share the remaining two thirds of the 

CPU. For the case n = 3, a plausible specification of 

a scheduler for these processes would be 

Sc = /fax ( ia.X + ib.X + ic.X) 

where the action a identifies the garbage collector, and 

b and c the user processes. But consider the restric­

tion context in which user c is denied further access to 

the machine. What would happen to its share of the 

CPU? Because of the symmetry in the above specifi­

cation, we would naturally arrive at the expression 

fizx(ta.X + tb.X) 

Now, however, the garbage collector is granted one half 

of the CPU which is different from our original intent. 

An exact specification of the scheduler can be obtained 

through the use of nested expressions of probabilistic 

choice: 

Sc'= fizxna.X + Htb.X + ~c.X)) 

which in the stratified model, yields the leftmost p:rob­

abilis;ic labeled transition system of Figure 2. If user 

c were now denied access we would obtain 

fizx(la.X + ~b.X) 

as desired. Thus, in the stratified model, the intended 

relative frequencies are preserved in a level-wise fash­

ion in the presence of restriction. 

Note that the probabilistic h1.beled transition 

of Sc' in the generative model is simply the one 

of Figure 2. Thus, in the generative model, Sc is (1m­

fortunately) equivalent to Sc1 • We shall see that, in 

a broader sense, the generative model is an abstra.c· 

tion of the stratified model, in which the branching 

structure of probabilistic choices has been "flattened." 

The extremal case of nested probabilistic choice in 

the stratified model, in which zero probabilities a.re 

permitted, yields a general notion of proceu ,.,.,,,,,..,.,,, 

For example, the expression 

lP + O(lQ +OR) 

gives priority to process P over Q and R, and priority 

to Q over R. Thus process R can only be executed in a. 

restriction context that excludes P and Q. Zew prob­

abilities are not considered in this paper, but their role 

in modeling priority is examined carefully in [SS90]. 
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Summary of Technical Results 

We will be working within the framework of PCCS, 

a specification language for probabilistic processes in­

troduced in [GJS90]. PCCS is derived from Milner's 

SCCS [Mil83] by replacing the operator of nondeter­

ministic process summation with a probabilistic coun­

terpart. Several PCCS expressions have appeared 

above, which should give the flavor of the language. 

For each of the three models we present the follow­

ing: 

• a structural operational semantics of PCCS, given 

as a set of inference rules in the style of Plotkin 

[Plo81] and Milner [Mil89J. For ea.eh model, 

these inference rules constitute a semantic map­

ping from the set of PCCS process expressions, 

Pr, to a particular domain of probabilistic l.a.beled 

transition systems. We denote these mappmgs as 

t.pR, t.pG, and i.ps, respectively. (As discussed in 

Section 3, the summation and relabeling opera­

tors of PCCS are not compatible with the reac­

tive model. Therefore, l.f'R applies only to a sub­

language PCCSR of PCCS, in which summations 
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Figure 2: Stratified and generative transition systems of Sc'. 

are both probability- and action-guarded, and re­
labeling is excluded.) 

• a notion of bisimulation semantics. In [LS89), 
Larsen and Skou introduced probabilistic bisim­

ulation, a natural and elegant extension of st:rong 
bisimulation [Par81, Mil83) for reactive processes. 
We likewise define probabilistic bisimulation on 
generative and stratified processes. In each 
model, the largest probabilistic bisimulation (un-

der set inclusion), denoted ~. :!., and !, respec­
tively, determines the model's bisimulation se­
mantics. 

• We prove that ~is a congruence with respect to 

PCCSR, and ~ and !., are congruences with re­
spect to PCCS. 

We then inter-relate the models, ultimately showing 
that they form a hierarchy: the generative model is 
an abstraction of the stratified model, and the reac­
tive model is an abstraction of the generative model. 
This reflects the stepwise reduction of "observational 
power"; i.e. starting from the stratified model, we first 
abstract from the probabilistic branching structure, 
and then from the relative probabilities among differ­
ent actions. We proceed as follows: 

• We add to the generative and stratified oper­
ational semantics inter-model abstraction rules, 

which allow the inference of reactive probabilis­
tic transitions f:rom generative ones; and, likewise, 
the inference of generative probabilistic transi­
tions from stratified ones. These rules determine 
mappings between domains of probabilistic la­
beled transition systems, and are denoted as f.PGR 
and f.PSGi respectively. 

• We obtain the following commutativity results, 

which establish the hierarchy among the models. 
For any PCCSR expression P and restriction-free 
PCCS expression Q, 

132 

<i'R(P) 
<i'G(Q) 

= 'f'GR(f.PG(P)) 
'f'SG('f's(Q)) 

and 

Additionally, we show that the latter commuta­
tivity result does not hold in the presence of re­
striction. 

• We then show that the equivalence induced on 
the stratified (generative) model via abstraction 
to the generative (reactive) model is not a congru­
ence with respect to PCCS. This demonstrates the 
need for refining the bisimula.tion semantics when 
moving to a less abstract model. More precisely, 
we exhibit a pair of PCCS processes P, Q and a 
context C[) such that 

'PsG('f's(P)) ~ 'f'sG('f's(Q)) and 

<psa('Ps(C[P])) !J, 'f'sa(i,os(C[Q))) 

Similarly for the reactive vs. generative case. 

The interdependencies between the different mod­
els are summarized in Figure 3. Here the upper part 
reflects the commutativity results, and the dashed ar­
rows below indicate the bisimulations that are induced 
on the stratified (generative) model via abstraction to 
the generative (reactive) model. 

We conclude the pa.per with an interesting open 

problem concerning an equivalence relation ~ ( mized 

bisimulation) that, in terms of its distinguishing 

strength, falls strictly between ~ and !, and is still 
a congruence in the stratified model. We conjecture 

that ~ is the largest congruence contained in 2. 

Related Work 

Larsen and Skou [LS89] have examined the reac­
tive model in the setting of testing. They exhibit a 
testing algorithm that, with probability 1 - 1:, where 
€ is arbitrarily small, can distinguish processes that 
are not probabilistically bisimilar. Bloom and Meyer 
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Figure 3: Interdependencies between the models. 

[BM89] further show that ifnondeterministic bounded­

branching processes P and Q are bisimilar then there 
. ' 
is an assignment of probabilities to the edges of P and 

Q, yielding reactive processes P' and Q' such that P' 

and Q' are probabilistically bisimilar; and P' and Q' 

have the same probability of producing a given out­

come under every test. 

Christoff [Chr89] also considers the testing of prob­

abilistic processes. He proposes three probabilistic 

testing equivalences and outlines an algorithm for the 

verification of these equivalences. Finally, Jones and 

Plotkin [JP89] investigate a probabilistic powerdomain 

of evaluations which they use to give the semantics of 

a language with a probabilistic parallel construct. 

2 Syntax of PCCS 

As in SCCS, the atomic actions of PCCS form a multi­

plicative structure (Act,·) that is generated freely from 

the set A of particulate actions. Unlike SCCS, where 

Act is an abelian monoid, we assume neither commu­

tativity nor associativity for action product (·). Thu; 

all elements of Act are of the form a or (a:,,8), where 

a E A and a:, ,8 E Act. One can think of the atomic 

action (a:,,8), which we sometimes write as a{J, as the 

simultaneous ordered occurrence of actions a and {3. 

As discussed in Section 3, the free structure of our 

action algebra is necessary to be able to define syn­

chronous product in the reactive model. For any 

SCCS-like action monoid or group, the corresponding 

synchronization merge can be expressed in our calcu­

lus by a combination of product and relabeling. For 

example, the group structure of SCCS can be obtained 

through relabelings like: (a, a) -+ 1 and (a, a) -+ 1 , 

where 1 is the unit or idle action of SCCS. 
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Let X be a variable, A a subset of Act, and / : 

Act -. Act. The syntax of PCCS is given by: 

E ::= 0 I X I a.E I 2: [pi] E, where Pi E (0, 1], 
iEI 

~e1Pi = 1 I ExF I EIA I E[f] I /izxE 

An expression having no free variables is called a 

proceas, and Pr is the set of all PCCS processes. In­

tuitively, 0 is the zero proceas having no transitions, 

while a . E performs action a with probability 1 and 

then behaves like E. The expression :l:[Pi] Ei offers 

a probabilistic choice among its constituent behaviors 

Ei. E x F represents synchronized product, and the 

restricted expression E I A can perform actions only 

from the set A. Finally, E[f] specifies a relabeling of 

actions, and fizx E defines a recursive process. 

For this paper, all summation expressions are re­

quired to be finite. Also, we write the binary version 

of process summation as [p] E + [1 - p] F, and often 

omit the square brackets around the probabilities. 

3 The Reactive Model 

The reactive model of probabilistic processes was in­

troduced by Larsen and Skou in [LS89]. In this section, 

we consider the reactive model within the context of 

PCCSR, a sublanguage of PCCS tailored to describing 

reactive processes. We begin by presenting the reactive 

operational semantics for PCCSR that defines a prob­

abilistic transition system for every PCCSR process. 

We then equip the model with a notion of probabilistic 

bisimulation, also due to Larsen and Skou, and show 

that the resulting equivalence relation is a congruence 

with respect to PCCSR. 

The syntax of PCCSR is identical to that of PCCS 



except for: 

1. Summation expressions are required to be both 

probability- and action-guarded; i.e., they are of 

the form: 

L [p,} a.;. Ei where ai E Act, P• E (0, 1} and 
iEI 

I:iEI Pi= 1 

2. The relabeling operator is eliminated. 

The first restriction is a consequence of the reactive 

viewpoint (see Section 1): for each action symbol a, 

a reactive process either possesses no a-transitions, or 

else the sum of the probabilities of all a-transitions is 

1. This would immediately suggest a syntax for sum­

mation expressions of the form: 

L L [p.;;] a.;. E.;j such that Vi E I, I: ·eJ P•i = 1 
iEljEJ 3 

However, such summations are not syntactically valid 

in PCCS, as the syntax of PCCS is inherently gener­

ative. Therefore, instead, we resort to PCCS summa­

tions of the form E = 2:[p.;]a.;. E0, and the probability 

that E will perform the transition encoded by the ith 

summand will be p.;, conditioned by the assumption 

{ ai}· For example, the expression ta.X + ~a.Y + tb.Z 

has an a-transition to X with associated probability ~, 

an a-transition to Y with associated probability i 1 and 

a b-transition to Z with associated probability 1. 

We note that it is possible to provide a reactive se­

mantics to general PCCS summations. However, the 

resulting models lack key algebraic properties such as 

substitutivity in the bisimulation semantics, or com­

mutativity from the generative model. 

The second restriction on the syntax of PCCSR is 

due to an inherent incompatibility between the oper­

ation of relabeling and the reactive viewpoint. For 

example, consider process P = ~a.X + ~b.Y. P has 
a probability-! a-transition to X and a probability-! 

b-transition to Y. However, ifthe relabeling that maps 

a to itself and b to a is applied to P, then we end up 

with a "nonsensical" object having two probability-! 

a-transitions. Relabeling could be defined in the reac­

tive model if an appropriate normalization procedure 

were applied. But, in this case, we would lose substi­

tutivity and commutativity as for general summation. 

Of course, injective relabelings can be added without 

problem. 
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3.1 Operational Semantics of PCCSn. 

The reactive operational semantics of PCCSR is given 

in Figure 4 as a set of inference rules. These rules col­

lectively define the semantic mapping '{JR from PrR, 

the dosed expressions of PCCS R, to the domain of re­

active probabilistic labeled transition systems. (This 

domain will be defined more formally in Section 3.2.) 

Reactive transitions are of the form 

or[p] 
p c___. P' 

meaning that P, with probability p, can perform an 

a-transition to become P'. 

The first rule, which has no premise and is thus 

an axiom, defines the probabilistic transitions of a 

probability- and action-guarded summation (hence­

forth referred to simply as a "guarded summation"). 

Here, .,., is the normalization factor used to compute 

the conditional probabilities of the guarded sum under 

the assumption { ai}. Note that action-prefixing is now 

a special case of guarded sum in which the index set I 
is of cardinality 1. The rest of the rules are straight­

forward adaptations of their SCCS counterparts. 

Unlike SCCS, all probabilistic transitions are in­
dexed. The purpose of the indices is to distinguish 

different occurrences of the same probabilistic transi­

tion, and are constructed so that every probabilistic 

transition of an expression has a unique index. (The 

indices will be used in the next section to define cu­

mulative probability distributions.) The following ex­
ample is illustrative: 

artJ 
([iJa. 0 + [ila. 0) c___.1 0 

a(t] 
([iJa. 0 + [tla. 0) c___.2 0 

3.2 Reactive Bisimulation 

We now consider reactive bisimulation, a notion of 

probabilistic bisimulation for reactive processes due to 

Larsen and Skou [LS89]. By definition, all reactive 

bisimulations are equivalence relations. Intuitively, 

two processes P,Q are probabilistically bisimilar in 

the reactive model if, for each action symbol, they de­

rive reactive bisimulation classes with equal cumula­

tive probability. 

To define reactive bisimulation, we first need to 

define the cumulative probability distribution function 

(cPDF) which computes the total probability by which 

a process derives a set of processes. Using 'P as the 



a[p] J3[q] aJ3 [p·q] 
E c:__., E' 

' 
F 

a[p] 

c:__.i F' ExF (i,;) E' x F' 

a[p] 
E ~A c__., E' ~A E c:__.i E' (o: EA) 

a[p] 
E{fizxE/X} c__., E' 

Figure 4: Reactive Operational Semantics of PCCSR 

powerset operator and adopting the convention that 
the empty sum of probabilities is 0, we have: 

Definition 1 (Reactive cPDF) µR: (PrR x Act x 
P(PrR))---+ [O, 1] is the total function given by: Vo: E 
Act, \j p E PTR, v s ~ PTR, 

a[p,] 

µR(P, o:, S) = L ~Pi IP c___,.i Q and Q ES} 

For an equivalence relation 'R over PrR, we write 
PT R/'R to denote the set of equivalence classes induced 
by 'R. Reactive bisimulation can now be defined as 
follows: 

Definition 2 ([LS89]) An equivalence relation 'R C 
PTR x PTR is a reactive bisimulation if (P,Q) E ii 
implies: VS E PrR/'R, Vo: E Act, 

µR(P, o:, S) = µR(Q, o:, S) 

Two processes P, Q are reactive bisimulation equiva­

lent (written P !!:, Q) if there ezists a reactive bisim­
ulation n such that (P, Q) E 'R. 

We will sometimes consider reactive bisimulation 
equivalence of transition systems rather than expres-

sions, e.g., IPR(P) !!:, IPR(Q). Definition 2 can be used 
with no change in this case. 

Similar to the case of classical bisimulation, if 'R1 
and n2 are reactive bisimulations, then so is their tran­
sitive closure (R1 U'R2t. Furthermore, reactive bisim­
ulation equivalence is the largest reactive bisimulation, 

i.e. 

!!:, = LJ { R I n is a reactive bisimulation} 

and can be found by a straightforward adaptation of 
the fixed-point iteration technique of [Mil89]. 

Like strong bisimulation does for SCCS or CCS 
reactive bisimulation equivalence provides a comp; 
sitional notion of semantics for PCCSR that is consis­
tent with the operational semantics defined in the last 
section. Specifically: 

Theorem 1 (Congruence) For P, Q E p.,.R: 

P !!:, Q implies V PCCSR contezts C[] : C[P] !!:, C[Q] 

Proof: The proof is by induction on the structure of 
the context. The case for the empty context is triv­
ial. Thus, it :remains to investigate only the top-most 
operator of the context. The proof for product is essen­
tially the same as the one given in Section 4.2 for the 
generative model. The case of restriction is straight­
forward, and for fiz, the proof is an adaptation of the 
same case in the congruence proof for strong bisimu­
lation [Mil83]. 

We are left with the case of guarded summation. 
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Let C[] be a summation context in which exactly one 
summand E, is replaced with a hole. It is sufficient 

to show that P !!:, Q implies C[ P] !!:, C[ Q] . Let ( P, Q) 
belong to the reactive bisimulation 'R0. It is enough 
to show that the reflexive, symmetric and transitive 
closure 'R of 'R1 = 'Ro U {( C[P], C[Q])} is a reactive 
bisimulation. This is straightforward. D 

We close this section by pointing out how the cu­
mulative PDF µR can be used to define the semantic 
mapping l.(JR from PCCSR to the domain of reactive 
transition systems. In particular, i()R is of the form 

such that t.pR(P) represents the probabilistic transition 
system having start state P and (cumulative) proba­
bility µ R ( P, o:, { Q}) of transiting to state Q via action 



o:. Note that the cumulative PDF provides us with 
a transition-system semantics in which the indices of 
the previous section, as defined by the inference rules 
of Figure 4, have been abstracted away. 

4 The Generative Model 

In contrast to the reactive model, which is defined only 
over the sublanguage PCCSR of PCCS, the generative 
model is defined over full PCCS. In this section, we 
provide PCCS with a generative operational seman­
tics. We then extend the notion of reactive bisimula­
tion to the generative case and show that the resulting 
equivalence is a congruence with respect to PCCS. 

4.1 Operational Semantics of PCCS 

The generative operational semantics of PCCS is given 
in Figure 5. We use a different kind of arrow (non­
hooked) to distinguish generative transitions from re­
active ones. As in the reactive case, generative tran­
sitions are indexed to distinguish multiple occurrences 
of the same probabilistic transition. 

With the exception of restriction, all rules a:re 
straightforward adaptations of their SCCS counter­
parts. The restriction rule defines the probabilistic 
transitions of E ~A in terms of the conditional prob­
abilities of E under the assumption A. In this rule, 
the function VG computes the generative normalization 
factor such that vG(E, A) is the sum of the probabili­
ties of the transitions of E labeled by symbols from A. 
Using -0,} as multi-set brackets, the formal definition 
of VG is given by 

To illustrate the generative operational semantics, 
consider the expression 

E =(a. 0) x ([~]b. X +[~Jc. Y + aJO) 

We have: 

( a,b )[ ! ] 
E ----+ci,t.1) 0 x X 

( a,c)[tl 
E ----->c1,2.1) 0 x Y 

As llG(E,{(a,b)}) =~'we also have: 

(a,b)[l] 
E l{(a, b)}--4(i,t.1) (0 x X) l{(a,b)} 
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A generative process is said to be stochastic if the 
sum of the probabilities of its derivations is 1. Other­
wise, when this sum is strictly less than 1, the process 
is said to be substochastic, and therefore possesses a 
non-zero probability of deadlock. With the exception 
of :restriction, the inference rules of Figure 5 preserve 
stochasticity: if the processes in the assumptions are 
stochastic, then so are the defined processes. In the 
case of restriction, the defined process may have no 
derivations at all. 

The normalization factor VG(E, A) used in the re­
striction rule of Figure 5 is such that a non-zero sub­
stochastic process placed in a restriction context be­
comes stochastic. Alternatively, the relative probabil­
ity of deadlock in a substochastic process can be pre­
served by normalizing by the quantity r = VG(E, A)+ 
1-vG(E, Act). The term 1-vG(E, Act) represents the 
probability of deadlock in E. To illustrate, we would 
have in the above example that VG(E, Act) = i, r = i, 
and thus: 

(a,b)[tJ 
E l{(a,b)}---+(1 ,i.1 ) (0 x X) ~{(a,b)} 

4.2 Generative Bisimulation 

The extension of reactive bisimulation to the gener­
ative model is straightforward. The definition of the 
generative cPDF µG is the same as Definition 1 ex­
cept that it is defined over Pr and in terms of indexed 
generative transitions. Likewise, the definition of a 

generative bisimulation and of £ are the same as in 
Definition 2, except that they are defined over Pr and 
in terms of µG. Also, the semantic mapping '-PG from 
PCCS to the domain of generative transition systems 
is defined exactly as t.p R. 

Similar to the reactive case, £ is substitutitive in 
PCCS. For an equivalence relation 1?. and a process P, 
we write [P]'R. to denote the equivalence class induced 
by 1?. of which Pisa member. 

Theorem 2 (Congruence) For P, Q E Pr: 

P £ Q implies V PCCS contezts C[ ] : C[P] £ C[Q] 

Proof: Again, the proof is by induction on the struc­
ture of the context. We present the cases of product 
and restriction. 

Product: 



a[l] 
o:.E--+ 1 E 

a[q] 
Ei--+,, E' 

a[p] 
E--+i E' , 

a[p] 
E--+i E' 

p~. 
J F' ==> 

==> 

(j EI) 

aj3 [p-q] 
ExF (i,i) E' x F' 

a[p/?] 
E\A i E' \A (a EA, r = va(E,A)) 

a[p] 
E--+i E' E[f] 

f(a)[p] 
i E'[J] ==> 

a[p] a[p] 
E{fizxE/X}--+ i E' ==> fizx E--+ i E' 

Figure 5: Generative Operational Semantics of PCCS 

We show P f!. Q implies P x R f!. Q x R. Let 

(P, Q) belong to the generative bisimulation 'R.0 • 

It is enough to show that the reflexive closure 'R. 

of 

'R1 = { (P x R, Q x R) I (P, Q) E 'R0 , RE Pr} 

is a generative bisimulation. First note that 'R. 

is an equivalence relation. Now suppose (P x 

R, Q x R) E R and µG(P x R, "(, [P' x R']'R.) = 
r. Then, by the structure of Act and the fact 

that [ P' x R']'R. = [ P']'R.o x R', we must have 

µG(P, o:, [P']'R. 0 ) = p, µG(R, (3, R') = q, 'Y = 
a · (3, and r = pq. But then, since P ~ Q, 
µG(Q,o:,[P']'R. 0 ) = p and µG(Q x R,"'(,[P' x 
R']-R-) = r. 'R. is therefore a generative bisimu­

lation. 

Restriction: 

We show P f!. Q implies PI' A :!, Q I' A, for A ~ 
Act. Let (P, Q) belong to the generative bisimu­

lation 'Ro. It is enough to show that the relation 

R={(P\A,Qf'A) !(P,Q)E'Ro} U Idp? 

is a generative bisimulation. This follows almost 

immediately from the following fact, whose proof 

is straightforward: 

P f!. Q implies VA~ Act: VG(P, A)= VG(Q, A) 

D 
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5 The Stratified Model 

The treatments of the reactive and generative models 

are extended here to the stratified case. 

5.1 Operational Semantics of PCCS 

The stratified operational semantics of PCCS is com­

prised of two types of transition relations: action tran­

sitions (as in SCCS) and probability transitions. Ac-

"' tion transitions are of the form P--+ Q. Probability 

transitions are of the form P ~ Q, meaning that P, 

with probability p, can behave as the process Q. This 

separation of action and probability in the stratified 

model permits the branching structure of the purely 

probabilistic choices to be captured explicitly. The in­

ference rules for probability transitions appear in Fig­

ure 6; the rules for action transitions, being essentially 

the same as in SCCS [Mil83), are omitted. Note, how­

ever, that there is no action rule for process summation 

since, in the stratified model, the only choice mecha­

nism is probabilistic. This bi-structured approach to 

operational semantics was (to our knowledge) first pre­

sented in [Tof90) to give a semantics for a timed version 

of CCS. 

The inference :rules for action and probability tran­

sitions define the semantic mapping <.ps from Pr to 

the domain of stratified probabilistic labeled transition 

systems. Such transition systems are stochastic in the 

sense that for each non-deadlocked state, the sum of 

the probabilities of its outgoing probability transitions 

is 1. A state with a probability transition to a dead-



I: [p,] Ei Pi 
1---+i E1 

iEl 

a 1 
E--+ E' ==:} E i--+1 E 

E 
p 

E' F 
q F' 

p·q E' xF1 
f-->i ' 

1---+j ==:} E x F 1---+(i,j) 

p 
E' vs(E1 ,A) =j:. 0 E~A 

p/11s(E,A) 
E'~A E 1---+i , ==:} 

E 
p 

1---+i E' ==:} E[f] ~. E'[f] 

E{f i;e x EI X} 
p 

1---+i E' ==:} fi'zxE ~. E' 

Figure 6: Stratified Operational Semantics of PCCS 

locked state corresponds to a substochastic state in the 

generative model. 

Similarly to the reactive and generative cases, the 

transitions defined in Figure 6 are indexed to dis­

tinguish multiple occurrences of the same probability 

transition. Except for the second and fourth rules, all 

of the inferences rules for probability transitions are 

straightforward adaptations of their SCCS counter­

parts. The second rule is needed to avoid deadlock in 

a synchronous product that is caused by a difference in 

depth of the purely probabilistic branching structures 

of the argument processes. For example, we do not 

want ( ~ a.O + t b.O) x c.O to deadlock simply because 

there does not exist a probability transition in the right 

hand argument. The deadlock is avoided by the second 

rule, which provides the missing !-transition. 

The fourth rule deals with the restriction opera­

tor, and expresses the probability transitions of E ~A 
in terms of the conditional probabilities of E under 

the assumption A. Intuitively, E ~A behaves like 

E, where all probability transitions to subexp:ressions 

that necessarily :require the execution of a restricted 

action are eliminated. The probabilities associated 

with these transition are evenly distributed among the 

remaining probability transitions. 

The function vs calculates the stratified normaliza­
tion factor. The condition vs ( E', A) f. 0 in the rule 

premise means that derivative E' of E is capable of 

performing an action transition from the set A of per­

mitted actions. 

{ 

a 
1 if E--+ , a E A 

vs(E, A)= O if E~ , f3 (/:.A; else 

I:, -OP• I E ~i E, , vs(E;, A) f. O} 

To illustrate the inference rule for restriction, con-
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sider the process 

P = l a.O + i ( ~ b.0 + ~ c.O) 

In the following, P is "evaluated" with respect to 

some :relevant restriction contexts, resulting in the 

restriction-free processes on the right-hand side. 

P ~{b, c} """ 
P~{a,c}""" 
p ~{c} """ 

l(~b.O+tc.O) 
!a.O + i lc.O 
1 {l c.O) 

As in the generative case, the inference rule for re­

striction can be extended in order to preserve the rela­

tive probability of deadlock in a substochastic process. 

This is accomplished by augmenting the definition of 

vs with the clause 

vs(E, A)= 1 if E f/--+ and E f-+ 

5.2 Stratified Bisimulation 

Stratified bisimulation is similar to reactive and gen­

erative bisimulation in that processes are required to 

derive stratified bisimulation equivalence classes with 

equal cumulative probability. However, the separa­

tion of probability and action in the stratified opera­

tional semantics is reflected in the definition of strati­

fied bisimulation. 

To define stratified bisimulation, we need to: (1) 
define the function that computes the total probabil­

ity by which a process can behave the same as as any 

process in a set of processes (the technique is analo­

gous to the one in Definition 1, and thus the details 

are omitted); (2) lift, in the obvious way, the action 

relations to sets of derivative processes. The stratified 



cumulative PDF µ5 encorporates both (1) a.nd (2) in 
an integrated fashion. In particular, µ 5 is of the form 

µs:(Prx(Act U {*})x'P(Pr))-+[0,1] 

where *is a dummy symbol used to mark probability 
transitions. That is, for a E Act, µ 5 (P, a, S) E { 0, 1} 
indicates whether or not P has an a-transition to some 
process in S. Otherwise, µs(P, *• S) E [O, l] specifies 
the total probability by which P may behave the same 
as any process in S. 

Definition 3 An equivalence relation n C Pr x Pr 
is a stratified bisimulation if (P, Q) E 'R, i;;;_plies 't/S E 
Pr/n, Va E Act u { * }, 

µs(P, a, S) = µs(Q, a, S) 

Two processes P, Q are stratified bisimulation equiva­
lent (written P ! Q) if there e:iists a stratified bisim­
ulation n such that (P, Q) ER. 

Theorem 3 (Congruence) For P, Q E P1': 

P ! Q implies 't/ PCCS conte:its C[] : C[P] ! C[Q] 

Proof: As before the proof is by induction on the 
structure of C. This time, however, each case is broken 
down into two subcases: cumulative probability tran­
sitions and action transitions. The proofs for the prob­
ability transitions are similar to the ones presented in 
Theorems 1 and 2. The proofs for the action transi­
tions are similar to the standard SCCS proofs. D 

6 Interrelating the Models 

In this section, we show by means of the abstraction 
function 'PGR, that for PCCSR expressions, the reac­
tive model is an abstraction of the generative model. 
Likewise, by means of the abstraction function 'PsG, 
we show that for restriction-free PCCS expressions, 
the generative model is an abstraction of the strati­
fied model. These abstraction functions are defined in 
terms of inter-model abstraction rules (IMARGR and 
IMARsG ), which allow the inference of reactive transi­
tions from generative ones, and generative transitions 
from stratified ones. The situation is summarized in 
Figure 3 of Section 1. 

6.1 The Generative to Reactive Ab­
straction 

Let E, E' E p,,. be closed expressions of PCCS. Then 
IMARGR is defined by 

E ~ i E' ==> E a[p/va(E,{a})J E' 

This rule uses the generative normalization function 
to convert generative probabilities to reactive ones, 
thereby abstracting away from the relative probabil­
ities between different actions (see also the discussion 
in Section 3). We can now define 'PGR( 'PG(P)) as the 
reactive transition system that can be inferred from 
P's generative transtion system via IMARGR· 

Lemma 1 For E, E' E p,,.R and action a E Act, 

1. µG(E,ex,E')=p>O, implies 
µR(E, ex, E') = p/vG(E, {ex}) and 

2. µG(E, ex, E') = 0 implies µR(E, ex, E') = 0 

Proof: By structural induction over E. The cases of 
interest are guarded summation and product. For the 
former, the key observation is that,,.,= llG(E, {ai}), 
where 1'i is the normalization factor for the ith sum­
mand in the reactive axiom for guarded summation 
(Figure 4). 

For product, the result hinges on the fact that, for 
E = F x H and o:, /3 E Act, 
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vG(F, {a})· vG(H, {.B}) = llG(E, {(a, ,8)}) 

0 

As an immediate consequence of Lemma 1 we have: 

Theorem 4 {Commutativity) For PE PrR 

Finally, we show that the equivalence induced on 
the generative model by reactive bisimulation is not a 
congruence. Consider the PCCS processes 

P = ~a. 0 + ib. c. 0 Q = ~a. 0 + ~b. c. 0 

For P,Q we have 

i.pGR('PG(P)) ~ 'PGR('PG(Q)) 

However, the same is not true for C(P] and C[Q], 
where C is the relabeling [a --+ a, b --+ a, c --+ c]. 
In particular, µG('PGR(<pG(C[P])), a, [c. OJ~) = i and 
µG('PGR('PG(C[Q])),a,[c.0]~) = t· 



6.2 The Stratified to Generative Ab­
straction 

Let E, E' be PCCS expressions. Then IMAR5a is 

given by 

Eo .X..:.,. · · · A· 1.1 'In 

E a[p] E' ==> ----+ i 

a 
En--+ E' 

where p = PoP1 · · · Pn 1 i = ioi1 ···in 
and (n = OV En-1 #En) 

The condition (n = 0 V En-1 f. En) excludes paths 

that contain occurrences of a probability-! transition 

from an expression that can perform an a-action. 

These probability transitions are artificial in the sense 

that they have only been introduced for technical pur­

poses (i.e., to deal with synchronous product). 

IMAR5a has the effect of "flattening" trees of prob­

ability transitions with action transitions at the leaves, 

into a single-level structure of generative transitions. 

Indeed, we show that the generative transition system 

of a restriction-free PCCS process P is isomorphic to 

the generative transition system that can be inferred 

from P's stratified transition system via IMAR5a. For 

example, let P = la. 0 + H tb. 0 + tc. 0). Then, by 

IMAR5a 
b[tl 

p--+ 2·1 0 
e[tl 

p--+ 2·2 0 

Except for the transition indices, these are precisely 

the transitions of P in the generative model. 

To derive the stratified-to-generative commutativ­

ity result, we need to extend the stratified cumulative 

PDF from single transitions to paths of transitions: for 

n 2: O, 

µ5(EoE1···En,*)= II µ5(Ei-l1*1{Ei}) 
19:$n 

By convention, the empty product is 1. Second, we 

define the notion of a path, possibly with probability 

transitions, from E to E' ending in an a-transition, 

a: E Act. 

Definition 4 For expressions Eo, Ei, ... , En, E' and 

action a E Act, 

Eo ···En E PATHS(E, a:, E') iff 
a 

(E = Eo) /\ (n = 0 V En-1 #En)/\ En---+ E' 

As for IMAR5a, the second conjunct in the defini­

tion excludes paths that contain artificial probability-1 

transitions. 
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Lemma 2 For restriction-free PCCS expressions 

E, E' and action a E Act 1 

µG(E, a, {E'}) = I: µ5(11", *) 
.,..ePATHS (E,a,E') 

Proof: The proof is based on the algebraic properties 

of µG and PATHS, which can be specified equation­

ally. For example, the equations for summation are: 

µG(l: fpi]E.,a,{E}) = 2=Pi ·µc(E,,a:,{E}) 
~I ~I 

PATHS(l: fpi]E,, a, E) = 
iEI 

LJ { (2:: fp,]Ei) PIPE PATHS( E., a, E)} 
i iEI 

For product we have 

µc(E x F,-y,{E' x F'}) 

µG(E,a,{E'}) ·µG(F,,B,{F'}) 

PATHS(E x F,-y, E' x F') = 

PATHS(E, a, E') x PATHS(F,,B, F') 

where a· /3 = "Y· Together with similar equations for 

the other operators and with the defining properties 

of µ5, a proof by structural induction over E is now 

straightforward. D 

As an immediate consequence of this lemma, we ob­

tain the following commutativity result: 

Theorem 5 (Commutativity) 
Let P E Pr be a restriction-free PCCS process. Then 

'P5G('Ps(P)) = 'Pc(P) 

Theorem 5 does not hold for arbitrary PCCS pro­

cesses. Consider the process 

P = la. 0 + H tb. 0 + tc. 0) ~ {a, b} 

'PG(P) is equal to ~a. 0 +~b. 0 while <p5c(cp5(P)) is 

equal to la . 0 + jb. 0. 

Finally, we show that the equivalence induced 

on the stratified model by generative bisimula­

tion is not a congruence. Consider processes 

Sc and Sc' of Section 1 (the scheduler specifica-

tions). We have <p5c(ip5(Sc)) £ 'P5G('Ps(Sc')) but, 

as discussed in Section 1, <psc(<p5(Sc ~{a, b})) i 
'PsG('Ps(Sc' ~{a, b})). 



7 Conclusions 

In this paper we have examined three models of prob­
abilistic processes. In so doing, we have seen that 

generative bisimulation ( !!., ) is not a congruence in 

the stratified model, while stratified bisimulation ( !-) 
is. However, !- is not the largest congruence con­

tained in !!., (it is too fine). For example, consider 

P = [l][l]a and Q = [l]a. <ps(P) 1' <ps(Q) yet 

<psc(i,os(C[P])) £ <psc(c,os(C[Q])), for any context C[]. 

It is interesting, therefore, to ask what is the largest 

congruence contained in £. We can show that, in 
terms of its distinguishing strength, the following 

equivalence relation falls strictly between £ and !-, 
and is still a congruence in the stratified model. 

Definition 5 An equivalence relation 'R ~ Pr x Pr 
is a mixed bisimulation if (P, Q) E 'R implies VS E 
Pr/n, 

µs(P,*,S)=µs(Q,*,S) and 

Va. E Act, µ~(P, a:, S) = µ~(Q, a., S) 

where µ(; (for expressions with restriction) is defined 
in the style of the rhs of the formula in Lemma 2. 
Two processes P, Q ar·e mixed bisimulation equivalent 

(written P ~ Q) if there exists a mixed bisimulation 
'R such that (P, Q) E 'R. 

Mixed bisimulation essentially allows an a:­
transition in one process to be matched by an a­

transition preceded by a number of probability-I tran­
sitions in the other process (the second clause). At the 
same time, probability-I transitions may be significant 
in a product context, and must therefore be taken into 
account (the first clause). We close with the following: 

Conjecture (Full Abstraction) In the stratified 
M . d. G 

model, ,...., is the largest congruence contame m ""· 
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