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It is known that the free surface of an axisymmetric viscous film flowing down the outside of a thin vertical
fiber under the influence of gravity becomes unstable to interfacial perturbations. We present an experimental
study using fluids with different densities, surface tensions, and viscosities to investigate the growth and
dynamics of these interfacial perturbations and to test the assumptions made by previous authors. We find that
the initial perturbation growth is exponential, followed by a slower phase as the amplitude and wavelength
saturate in size. Measurements of the perturbation growth for experiments conducted at low and moderate
Reynolds numbers are compared to theoretical predictions developed from linear stability theory. Excellent
agreement is found between predictions from a long-wave Stokes flow model �Craster and Matar, J. Fluid
Mech. 553, 85 �2006�� and data, while fair to excellent agreement �depending on fiber size� is found between
predictions from a moderate-Reynolds-number model �Sisoev et al., Chem. Eng. Sci. 61, 7279 �2006�� and
data. Furthermore, we find that a known transition in the longer-time perturbation dynamics from unsteady to
steady behavior at a critical flow rate Qc is correlated with a transition in the rate at which perturbations
naturally form along the fiber. For Q�Qc �steady case�, the rate of perturbation formation is constant. As a
result, the position along the fiber where perturbations form is nearly fixed, and the spacing between consecu-
tive perturbations remains constant as they travel 2 m down the fiber. For Q�Qc �unsteady case�, the rate of
perturbation formation is modulated. As a result, the position along the fiber where perturbations form oscil-
lates irregularly, and the initial speed and spacing between perturbations varies, resulting in the coalescence of
neighboring perturbations further down the fiber.
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I. INTRODUCTION

Coatings are commonly applied to the exterior of thin
cylindrical wires or fibers to provide protection and/or en-
hance performance �e.g., electrical wire and fiber-optic
cable�. Methods of coating include extruding a fiber through
a die �die coating� or drawing a fiber from a liquid bath �dip
coating� �1–5�. During the coating process, a uniform liquid
film can become unstable to interfacial perturbations that
may develop further into droplets �6,7�. This effect, which
detracts from the quality of a coating, has inspired a wide
array of studies on the formation and motion of perturbations
on cylindrical fibers �6–13�.

Fibers can also be coated by a continuously fed axisym-
metric fluid flow down the length of a vertical fiber �see Fig.
1�, as has been examined in several analytical and experi-
mental studies �14–19�. The geometry of the unperturbed
flow is an annular film with a fixed internal boundary and a
free surface at the outer fluid-air interface. It is well known
that the free surface of this annular film becomes unstable to
interfacial perturbations, as shown in Fig. 1. Herein we
present an experimental study on an annular viscous film
with a particular focus on the initial formation and longer-

time dynamics of perturbations along the film free surface.
A related problem to annular films is that of the motion of

cylindrical jets, which in contrast have no fixed internal
boundary. Analytical studies on the motion and stability of
inviscid and viscous jets date back to the work of Plateau
�20�, Lord Rayleigh �21,22�, Weber �23�, and Chandrasekhar
�24�. It is known that capillary effects drive perturbation
growth along the jet free surface; this is often referred to as
the Plateau-Rayleigh instability. Predictions for perturbation
growth along inviscid and viscous jets, developed from tem-
poral linear stability theory �24�, were tested in experiments
by Donnelly and Glaberson �25�. They found strong agree-
ment between the theoretical and measured dispersion rela-
tions for an inviscid jet and fair agreement for a viscous jet.
The dynamics of free surface perturbations along cylindrical
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FIG. 1. An annular film of viscous fluid �80:20 glycerol:water
solution� flowing down the outside of a thin nylon fiber; the sur-
rounding fluid is air. Note that the figure has been rotated by 90°
with gravity acting toward the right. Perturbations develop along
the free surface some distance down the fiber; once formed, these
perturbations continue to travel down the fiber. Image length
=9.7 cm.
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jets and annular films are, however, quite different. In the
cylindrical case, jet breakup occurs when the perturbations
become sufficiently large �25�, while in the annular case, the
large-amplitude perturbations remain connected by a liquid
film �14,15,19�.

Recently, several theoretical studies have analyzed the
temporal linear stability of an annular viscous film flowing
down a vertical fiber in the Stokes �14,15� and moderate-
Reynolds-number �17,18� limits; the base flow in these stud-
ies is assumed to be a steady, unidirectional, parallel flow.
Here we test these results by determining whether �i� the
base flow used in �14,15,17,18� matches the experimental
flow; and �ii� the dispersion relations derived in the Stokes
and moderate-Reynolds-number limits �15,18� correctly pre-
dict the nascent growth of perturbations measured in low-
and moderate-Reynolds-number flows.

As free surface perturbations travel down a vertical fiber,
many interesting phenomena occur �14,15,18,19�. In experi-
ments, Kliakhandler, Davis, and Bankoff �KDB� observed
three types of behavior far down the length of the fiber
��2 m� �14�. At the highest flow rate �regime a�, the film
between perturbations is thick and uniform, and faster-
moving perturbations collide into slower-moving perturba-
tions �unsteady behavior�. At an intermediate flow rate �re-
gime b�, the spacing, size, and speed of the perturbations are
constant so that no collisions occur �steady behavior�. And,
at the lowest flow rate �regime c�, the fluid periodically drips
from the tank �rather than jets, as in regimes a and b�, which
creates a regular spacing between perturbations near the tank
outlet. The long time between drips allows the film connect-
ing consecutive perturbations to thin and subsequently be-
come unstable to smaller capillary perturbations. �Figure 1 in
�14� illustrates these three regimes of behavior.� Simulations
of a Stokes flow model developed by KDB qualitatively cap-
tured two of the three observed behaviors �regimes b and c�,
while the behavior associated with the highest flow rate
�regime a� could not be replicated �14�.

Craster and Matar �CM� �15� select a different scaling
than KDB to derive an evolution equation for the free sur-
face. Using traveling wave solutions, their Stokes flow
model quantitatively predicted the perturbation speed and
height of regime a measured by KDB. The model also quali-
tatively captured regime c, though the steady pattern of per-
turbation spacing found in regime b could not be matched
with traveling wave solutions. In experiments, CM observed
regime b near the tank outlet; however, they found that the
regularly spaced pattern of perturbations disassembled itself
further down the fiber. From this observation, CM concluded
that regime b is a transient rather than a steady regime �15�.

The contradiction between observations of regime b
�steady behavior� by KDB and CM motivated us to look
more closely at the steady and unsteady states by examining
the dynamics of the perturbations where they initially form
along the fiber. In our experiments, we find that the occur-
rence of regime b is dependent on the fiber size. Using fluids
with different densities, surface tensions, and viscosities and
a moderate-sized fiber we observe regimes a �unsteady�, b
�steady�, and c �dripping�, whereas with a thinner fiber we
observe only regimes a and c. In the former case, we find
that the flow transitions abruptly from unsteady to steady

behavior at a critical flow rate Qc �the value of Qc is depen-
dent on the particular fluid� �26�. In a recent independent
study, Duprat et al. �19� explain the transition from regime a
�unsteady behavior� to regime b �steady behavior� as a tran-
sition from convective to absolute instability. In their experi-
ments with silicone oil using a range of fiber and orifice
radii, they find that the transition occurs only at intermediate
film thicknesses and for sufficiently small fiber radii; at thin
or thick film thickness, they find that the perturbation behav-
ior remains convective �unsteady� �19�. Here we find that the
transition from unsteady to steady behavior is also correlated
with the rate at which perturbations naturally form along the
fiber. For Q�Qc �steady case�, the rate of perturbation for-
mation is constant. As a result, the position along the fiber
where perturbations form is nearly fixed, and the spacing
between consecutive perturbations remains constant as they
travel 2 m down the fiber. For Q�Qc �unsteady case�, the
rate of perturbation formation is modulated. As a result, the
position along the fiber where perturbations form oscillates
irregularly, and the initial speed and spacing between pertur-
bations vary, resulting in the coalescence of neighboring per-
turbations further down the fiber.

The paper is organized as follows. The experimental setup
and properties of the unperturbed flow are presented in Sec.
II. Measurements of the perturbation growth are compared to
analytical predictions for Stokes and moderate-Reynolds-
number conditions in Sec. III. The perturbation behavior ex-
hibited in regimes a �unsteady� and b �steady� near the tank
outlet are closely examined in Sec. IV. Conclusions are pro-
vided in Sec. V.

II. EXPERIMENTAL SETUP AND DETAILS

A. Experimental apparatus

The experimental setup consists of viscous fluids, a reser-
voir tank–orifice assembly, nylon fishing line, a high-speed
digital imaging camera, illumination, a computer, and edge-
detection software �a schematic of the experiment is shown
in Fig. 2�a��. The reservoir tank �6 l capacity� is graduated at
100 ml increments to measure flow rate. An orifice, ma-
chined with a flat edge �inner radius=0.11 cm, outer
radius=0.16 cm, length=2.6 cm�, is attached to the bottom
of the tank to ensure a reproducible solid/fluid/air contact
line in the experiment. A nylon fiber �radius=0.010 or 0.029
cm� anchored from above, passes through the center of the
tank-orifice assembly, and is held vertically plumb with
weights attached 2 m below the orifice. The fluid, which is
gravitationally forced from the tank, coats the fiber to create
an annular film. To reduce air currents and other noise during
data collection, the entire apparatus is enclosed by an alumi-
num frame with plastic sheet sidewalls and top.

The motion of the annular film is recorded using a high-
speed digital imaging camera �Phantom v4.2� at rates be-
tween 1000 and 4000 frames/s and an image size of 64
�512 pixels2 with the camera focused on approximately the
upper 10 cm of the fiber. Illumination is obtained using sil-
houette photography following �27�, with a 250 W lamp, an
experimental grade one-way transparent mirror �Edmund
Scientific, A40,047�, and high-contrast reflective screen ma-
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terial �Scotchlite 3M 7615�. Movies of the annular film are
recorded and downloaded to a computer using camera soft-
ware. The free surface of the film is determined from movie
images using an edge-detection algorithm. The algorithm lo-
cates the free surface by interpolating the maxima positions
in a gradient image; the gradient image is produced using the
Frei-Chen operator �28�. The algorithm can detect the edge
of the film free surface to within approximately 1 /10 of a
pixel, which for the screen resolution in our experiments
corresponds to �0.002 cm.

The experimental fluids consist of castor oil, vegetable oil
�Crisco�, and an 80:20 glycerol:water solution �by weight�.
The temperature, density ���, surface tension ���, and
dynamic viscosity ��� of the fluids, and the fiber radius �rf�,
framing rate, and screen resolution used in the experiments
are listed in Table I. Experiments with castor oil and
vegetable oil were conducted with the thicker fiber
�rf =0.029 cm�, while experiments with glycerol solution
were conducted with both sized fibers. The surface tension
was measured at room temperature using a Fisher 21 tensi-
omat and viscosity was measured using a temperature-
controlled cone and plate rheometer �Brookfield, Model DV-
III��. The fluid temperature varied by less than 4.6%, 1.9%,
and 1.4% in the castor oil, vegetable oil, and glycerol solu-

tion experiments, respectively. We note that �i� the selection
of fluids allows us to independently probe the influence of
surface tension or viscosity on flow behavior �with rf
=0.029 cm� since castor oil and vegetable oil have compa-
rable surface tensions, while vegetable oil and the glycerol
solution have comparable viscosities; and �ii� the glycerol
solution experiments allow us to probe the influence of fiber
radius on the flow behavior.

B. Base flow properties

In each experiment, the reservoir tank drained under the
influence of gravity and the elapsed time and tank volume
were recorded as the fluid passed each 100 ml mark to de-
termine the flow rate �Q�. Data were collected only while the
flow was jetting from the orifice and an unperturbed region
of the film free surface was present near the orifice �corre-
sponding to regimes a and b �14��. Measurements of the flow
rate during each experimental run for vegetable oil �squares�,
glycerol solution �triangles�, and castor oil �circles� are
shown in Fig. 3�a�; open symbols correspond to rf
=0.010 cm, filled symbols to rf =0.029 cm. �Note that in
each experiment the flow rate decreases as the tank volume
decreases.� Figure 3�a� shows that the flow rate increases
linearly over the range of tank volume used in each experi-
mental run. Furthermore, the flow rate �i� decreases with in-
creasing fiber radii �glycerol solution�; and �ii� decreases
with increasing viscosity �Qcastor is an order of magnitude
less than Qglycerol and Qvegetable� and increases with increasing
surface tension �Qglycerol�Qvegetable� for fixed rf.

The unperturbed film radius r0, measured from the fiber
centerline to the unperturbed free surface �see Fig. 2�b��, was
measured using edge-detection software. Figure 3�b� shows
that the unperturbed radius increases with flow rate in each
experimental run. This trend is similar to behavior observed
in dip coating, in which the film thickness increases with the
velocity at which the fiber is drawn from the fluid source at
sufficiently low withdrawal rates �1–3,5�. Comparing data
for the glycerol solution �filled triangles� and vegetable oil
�squares� experiments, we find that at a fixed flow rate higher
surface tension �glycerol solution� results in a thinner unper-
turbed film. Furthermore, comparing glycerol solution ex-
periments, we find that at a fixed flow rate an increase in the
fiber radii results in a thicker unperturbed film. In our experi-
ments the films are thick, with the ratio of unperturbed film

1L

Camera

Orifice

Nylon Fiber

g

Reservoir Tank

rf

r0

h0

λ

2η

z

r = S(z,t)

(a) (b)

FIG. 2. �a� Schematic of experimental setup. �b� Cross section
of an annular film flowing down the outside of a fiber of radius rf

�not to scale�. The unperturbed film radius measured from the fiber
centerline is r0, unperturbed film thickness h0, perturbation ampli-
tude ��z , t�, and perturbation wavelength �.

TABLE I. Fluid properties and experimental conditions.

Temperature � � 	 Framing rate Screen resolution

Fluid �°C� �g/cm3� �dyn/cm� �g/cm s� �frames/s� �cm/pixel�
Castor oila 21.9 0.94 36.8 8.48 1000 0.0190

Vegetable oila 21.6 0.92 34.3 0.58 4000 0.0180

Glycerol solutiona 21.2 1.21 60.4 0.54 2000 0.0186

Glycerol solutionb 21.7 1.21 60.4 0.52 2000 0.0189

arf =0.029 cm.
brf =0.010 cm.
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thickness to fiber radius in the range 2.5�h0 /rf �9.5.
The relevant forces that characterize the dynamics of an

annular film can be determined by considering two dimen-
sionless groups, the Reynolds number and Bond number.
Following CM �15�, we define characteristic length and ve-
locity scales as

L = �/��gr0�, V = �gr0
2/	 , �1�

where g is the gravitational constant of acceleration, the Rey-
nolds number as Re=�VL /	, which compares inertial to vis-
cous effects, and the Bond number as Bo=�gr0

2 /�, which
compares gravitational to surface tension effects �15�. The
values of Re and Bo for our experiments, listed in Table II,

indicate that inertial effects are negligible for castor oil
�Re�O�10−2��, in contrast to the vegetable oil and glycerol
solution experiments �Re�O�10��, and surface tension
dominates over gravitational effects in the formation of in-
terfacial perturbations for all three fluids �Bo�O�10−1��.

Experimental �14,15� and theoretical �14,15,17,18� stud-
ies often assume that the base flow of an annular film is
steady, unidirectional, and parallel. Under these conditions,
the unperturbed flow with free surface located at r=r0 and
constant pressure field p�r ,z , t�= p0 is described by the
boundary value problem for the axial velocity w�r�,

	r−1�r�r�rw� + �g = 0, w�rf� = 0, �rw�r0� = 0, �2�

where the boundary conditions include no-slip at the fiber
and zero tangential stress at the free surface. Equations �2�
can be solved exactly for the axial velocity to obtain

w�r� =
�g

4	
�2r0

2 ln�r/rf� + rf
2 − r2� . �3�

Using �3�, the flow rate of an annular film can be expressed
in terms of rf and r0:

Q�rf,r0� = 2
�
rf

r0

rw�r�dr =
�g


8	
�4rf

2r0
2 + 4r0

4 ln�r0/rf� − rf
4

− 3r0
4� . �4�

It is worth noting that the functional forms of the axial ve-
locity and flow rate used in the theoretical studies of KDB
�14�, CM �15�, and Sisoev et al. �18� are equivalent to �3�
and �4�, respectively. Next, we compare �4� to experimental
data to test the assumption that the base flow of an annular
film is steady, unidirectional, and parallel.

Figure 3�b� shows a comparison of the flow rate as a
function of the unperturbed film radius for vegetable oil,
glycerol solution, and castor oil measured directly in experi-
ments �symbols� and using �4� �dotted lines�. We find excel-
lent agreement between �4� and the experimental data for
castor oil �circles�, vegetable oil �squares�, and glycerol so-
lution with rf =0.010 cm �open triangles�, which indicates
that the flow in these experiments is well approximated by a
steady, unidirectional, parallel flow. In the glycerol solution
experiment with rf =0.029 cm �filled triangles�, the theory
overestimates 27% of the experimental data by as much as
4.5%; the fiber was slightly off center in these experiments
�shown in Fig. 1�, which may account for this discrepancy.
Based on the strong agreement in Fig. 3�b�, we find that �3�
and �4� are valid for the flow conditions in our experiments,
Bo�1 and Re�30. The experiments conducted by KDB
�14� and CM �15� meet this criterion; thus we conclude that
their assumption that the flow is steady, unidirectional, and
parallel is indeed valid.

In the following sections, we examine the dynamics of a
perturbed annular film including the initial formation and
longer-time dynamics of interfacial perturbations along the
free surface.
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FIG. 3. �a� Experimental flow rate as a function of the reservoir
tank volume. �b� Flow rate as a function of the unperturbed film
radius: experimental data �symbols�, theory given by Eq. �4� �dotted
line�; bars represent the resolution of experimental measurements.
Symbols correspond to vegetable oil �squares�, glycerol solution
�triangles�, castor oil �circles�, open symbols �rf =0.010 cm�, and
filled symbols �rf =0.029 cm�.

TABLE II. The Reynolds number and Bond number measured
in experiments.

Fluid Re Bo

Castor oila 0.049–0.054 0.26–0.32

Vegetable oila 9.4–11.6 0.26–0.40

Glycerol solutiona 27.2–31.2 0.23–0.30

Glycerol solutionb 24.9–28.4 0.17–0.22

arf =0.029 cm.
brf =0.010 cm.
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III. PERTURBATION GROWTH

The image in Fig. 1 illustrates the capillary instability an
annular viscous film undergoes as the unperturbed free sur-
face becomes unstable to undulations that develop into large-
amplitude perturbations. Next we present experimental ob-
servations on the growth of these interfacial perturbations
and compare their initial growth to theoretical predictions
developed from linear stability analysis. Before proceeding,
we first recount relevant stability results developed in the
Stokes �15� and moderate-Reynolds-number flow �18� limits.

A. Linear stability results

1. Stokes flow

Craster and Matar �15� derive a long-wave Stokes flow
evolution equation for the free surface of the annular film,
r=S�z , t�, under the assumptions that the unperturbed film
radius r0 is small relative to the capillary length lc=� /�gr0
�i.e., Bo=r0 / lc=�gr0

2 /��1� and the Reynolds number is
sufficiently small �Re�O�1��, to obtain

�t̂�Ŝ2� +
1

8
�ẑ�	�ẑ
1

Ŝ
− �Bo�2�ẑẑŜ� − 1��4 − 4Ŝ22 + 3Ŝ4

− 4Ŝ4 ln�Ŝ/�� = 0, �5�

where Ŝ, ẑ, and t̂ are dimensionless variables satisfying the
scalings

S = r0Ŝ, z = Lẑ, t = Lt̂/V , �6�

and =rf /r0. Conducting a linear stability analysis by per-
turbing about the base flow

Ŝ�ẑ, t̂� = 1 + Ŝ1e�imẑ+�t̂�, �7�

where m is the �real� dimensionless wavenumber and � is the
�complex� dimensionless growth rate, CM obtain the follow-
ing dispersion relation for the growth rate:

� =
m2

16
�Bo2m2 − 1��4 − 42 + 3 + 4 ln��� −

im

2
�2 − 1

− 2 ln��� . �8�

2. Moderate-Reynolds-number flow

In an analytical study, Trifonov �17� derived model equa-
tions for fluid flowing down the inside or outside of a vertical
cylinder at moderate Reynolds number; the model includes
evolution equations for the film thickness h�z , t�=S�z , t�−rf

and volumetric flow rate q�z , t�. In a recent study, Sisoev et
al. �18� rescale Trifonov’s equations for flow down the out-
side of a vertical cylinder, casting the model in terms of a
generalized falling film model �29� �see Eqs. �11�–�13� in
�18��. Conducting a linear stability analysis of the rescaled
equations by perturbing about the base solution

ĥ�ẑ, t̂� = 1 + ĥ1ei�mẑ−�t̂�, �9a�

q̂�ẑ, t̂� = 1 + q̂1ei�mẑ−�t̂�, �9b�

where m is the �real� dimensionless wavenumber and � is the
�complex� dimensionless growth rate, Sisoev et al. obtain a
dispersion relation for � satisfying

�2 + �ia1,0 − a1,1m�� +
m

1 + �
�− a0,3m3 − a0,1m + ia0,0� = 0,

�10�

where �=h0 /rf and the constant coefficients
a1,0 ,a1,1 ,a0,3 ,a0,1 ,a0,0 are defined in the Appendix. The vari-

ables ĥ, ẑ, and t̂ are dimensionless quantities satisfying the
scalings

h = h0ĥ, z =
h0

�
ẑ, t =

h0

�U
t̂ , �11�

where

� = 
�gh0
2

�
�1/3

, U =
Q

2
rfh0
, �12�

represent a stretching parameter and a characteristic velocity
scale, respectively. We note that the long-wave model used
by Sisoev et al. is derived under the assumption that �2�1,
and that the model’s accuracy decreases with increasing val-
ues of �2�1 �30�. Another important parameter,

� =
1

45�2
�g4h0
11

�
�1/3

, �13�

is used to parametrize the falling film problem �18�. In order
for the moderate-Reynolds-number model to apply, the
waves must be sufficiently long, which for small values of �

FIG. 4. An annular film of castor oil flowing down the outside
of a thin nylon fiber �rf =0.029 cm�. The film loses uniformity ap-
proximately 5.4 cm from the orifice indicated by the circled area in
frame �b�. Subsequent frames track the position and growth of this
nascent perturbation. Time between images is 0.42 s and elapsed
time=3.7 s. Image height=9.7 cm.
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requires ��1. The values of �, �, and �2 for our experiments
are provided in Table III.

The stability results developed by Craster and Matar �15�
and Sisoev et al. �18� are from a temporal analysis �since
m�R and ��C�, and thus model the case in which interfa-
cial perturbations grow in amplitude everywhere along the
film �31�. Our interest is in testing these stability predictions
by comparing the theoretical dispersion relations �8� and �10�
to the growth rate of perturbations measured in experiments
conducted in the Stokes and moderate-Reynolds-number
flow limits.

B. Experimental observations of perturbation formation

Figure 4 shows a series of images tracking the formation
of a perturbation along an annular film of castor oil. In Fig.
4�b�, a small-amplitude perturbation first appears along the
film approximately 5.4 cm from the orifice �circled region�.
Figures 4�c�–4�j� track the position of this perturbation as it
grows in amplitude and saturates in size. Once formed, the
perturbation continues moving down the fiber �not shown�.
Since the perturbation grows in amplitude as it travels down
the fiber, the flow is spatially unstable rather than temporally
unstable to perturbations �31�.

To characterize the growth of a perturbation, we measure
the amplitude � �half the radial distance from first minimum
to first maximum� and the wavelength � �the axial distance
from first to second maximum� as shown in Fig. 2�b� using
edge-detection software; both measurements are made in the
moving reference frame of the perturbation. The data shown
in Fig. 5 correspond to the perturbation tracked in Fig. 4.
Figure 5�a� shows that the nascent growth of the amplitude is
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FIG. 5. �a� Amplitude ��� and �b� wavelength ��� of a nascent
perturbation as a function of time for castor oil
�Q=0.0194 cm3 /s�; experimental data correspond to the perturba-
tion tracked in Fig. 4. �a� The initial amplitude growth of the per-
turbation is exponential �shown in inset on log-linear scale� fol-
lowed by nonlinear saturation. Dotted line: fit of data to ��t�
=0.0023e0.959t corresponding to growth between frames �b� and �g�
in Fig. 4. �b� The wavelength decreases during the time interval that
the amplitude grows exponentially and then saturates in length as
the amplitude saturates in size.
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mensionless wavenumber for experiments with �a� castor oil and �b�
vegetable oil. Circles correspond to experimental data for the aver-
age growth rate and wavenumber measured over several perturba-
tions at �a� Q=0.0194, orange; 0.0171, black; 0.0148, cyan; 0.0123,
red; 0.0111, green; and 0.0103, blue; �b� Q=0.416, orange; 0.383,
black; 0.342, cyan; 0.252, red; 0.211, green; and 0.170, blue. Units
are cm3 /s. Vertical bars represent the standard deviation of � and
horizontal bars represent the range of m measured during the period
of exponential growth over all perturbations measured. Correspond-
ing colored curves represent the real part Re��� predicted by the
Stokes model �8� plotted over the range of m measured in experi-
ments �15�.

TABLE III. Experimental values of parameters from the
moderate-Reynolds-number model �18�.

Fluid � � �2

Vegetable oila 0.013–0.028 2.6–3.3 0.28–0.38

Glycerol solutiona 0.035–0.054 2.9–3.3 0.27–0.32

Glycerol solutionb 0.033–0.043 8.2–8.8 0.26–0.29

arf =0.029 cm.
brf =0.010 cm.
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exponential �inset�, followed by a slower phase as the per-
turbation saturates in size ��saturate=0.035 cm�. The growth
rate for the initial formation of the amplitude is determined
from a least-squares fit of the data to an exponential function,
yielding the dimensional growth rate �dim=0.959 s−1 �fit in-
dicated by dotted line in Fig. 5�a��. The wavelength of this

perturbation decreases from �=0.98 cm to 0.80 cm during
the time interval in which the amplitude grows exponentially
�0� t�2.34 s�, before saturating in length to �=0.83 cm,
as shown in Fig. 5�b�. The variation in � during the expo-
nential phase of growth indicates that the annular film is
unstable to a range of wavenumbers �=2
 /��, rather than to
one fixed value.

The initial exponential growth of the amplitude displayed
in Fig. 5 is typical of observations made in the castor oil,
vegetable oil, and glycerol solution experiments. Next, we
compare the measured growth rates to predictions developed
from linear stability theory. Comparison of perturbation
growth to the Stokes �8� or moderate-Reynolds-number �10�
dispersion relations depend on the flow conditions in each
experiment, specifically on the Reynolds and Bond numbers
�provided in Table II�. In the castor oil experiments, Bo
�O�10−1� and Re�O�10−2�, thus satisfying the require-
ments of the Stokes model �Bo�1, Re�O�1��. Since 25
�Re�30 in the glycerol solution experiments, inertial ef-
fects cannot be ignored, and so we compare this case to the
moderate-Reynolds-number model. With Bo�O�10−1� and
9.4�Re�11.6, the vegetable oil experiments are on the bor-
der of the requirements for the Stokes model. In this case we
compare the experimental data to the Stokes and moderate-
Reynolds-number dispersion relations.

Figure 6 shows a comparison of the measured amplitude
growth rate to the dispersion relation developed by Craster
and Matar in the Stokes flow limit �8� for �a� castor oil and
�b� vegetable oil at various flow rates. At a given flow rate,
the growth rate for several perturbations was measured �8–12
perturbations for castor oil, and 15–44 for vegetable oil�. The
average dimensionless growth rate ��=�dimL /V� and dimen-
sionless wavenumber �m=2
L /�� measured over all the
perturbations are denoted by a circle, with each color corre-
sponding to a different flow rate. The vertical bars represent
the standard deviation of all the growth rates measured at a
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FIG. 7. �Color� Dimensionless growth rate as a function of di-
mensionless wavenumber for experiments with �a� vegetable oil, �b�
glycerol solution with rf =0.029 cm, and �c� glycerol solution with
rf =0.010 cm. Circles correspond to experimental data of the aver-
age growth rate and wavenumber measured over several perturba-
tions at �a� Q=0.416, orange; 0.383, black; 0.342, cyan; 0.252, red;
0.211, green; and 0.170, blue; �b� Q=0.538, orange; 0.493, black;
0.437, red; 0.381, green; and 0.325, blue; �c� Q=0.548, black;
0.444, red; 0.341, green. Units are cm3 /s. Vertical bars represent the
standard deviation of � and horizontal bars represent the range of m
measured during the period of exponential growth over all pertur-
bations measured. Corresponding colored curves represent the
imaginary part Im��� predicted by the moderate-Reynolds-number
model �10� plotted over the range of m measured in experiments
�18�.

FIG. 8. Coalescence of two perturbations along an annular film
of glycerol solution. Q=0.359 cm3 /s, rf =0.029 cm, time between
images is 0.0125 s, elapsed time=0.1 s, image height=9.7 cm.
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given flow rate. Since the perturbation wavelength varies
during the exponential phase of growth, we cannot assign a
single wavenumber to its growth. Instead, the horizontal bars
represent the range of wavenumber measured during the pe-
riod of exponential growth of all the perturbations. The cor-
responding colored curves represent the real part of the
growth rate predicted by �8� plotted over the range of wave-
number measured at each flow rate. We consider the theory
to be in agreement with the experimental data �at a given
flow rate� if the theoretical curve overlaps the rectangular
region defined by the resolution bars of the data. Figure 6
shows that the Stokes theory is in agreement with four of the
six castor oil experiments and with five of the six vegetable
oil experiments. In the other three experiments, the theory
overestimates the measured values by 1–8 %. Overall, the
quantitative agreement between theory and experimental
data is excellent, a significant result considering that �i� the
comparison is between a temporal stability theory and a spa-

tial instability of the film, and �ii� the value of the Reynolds
number in the vegetable oil experiments, Re�10, is slightly
higher than the criterion for the Stokes model, Re�O�1�.

Figure 7 shows a comparison of the measured amplitude
growth rate to the dispersion relation developed by Sisoev et
al. in the moderate-Reynolds-number limit �10� for �a� veg-
etable oil, �b� glycerol solution with rf =0.029 cm, and �c�
glycerol solution with rf =0.010 cm at various flow rates.
The data and theory are presented in a similar fashion to Fig.
6 with the exception that the dimensionless growth rate and
wavenumber are given by �=�dimh0 / ��U� and m
=2
h0 / ����, and the growth rates for the glycerol solution
experiments are averaged over 88–102 perturbations for rf
=0.029 cm and 17–40 perturbations for rf =0.010 cm. In
the case of the thicker fiber �rf =0.029 cm�, the moderate-
Reynolds-number model overestimates the measured growth
rates by 12–38 % for vegetable oil and 13–30 % for glycerol
solution, as shown in Figs. 7�a� and 7�b�. In the case of the

FIG. 9. Space-time plot illustrating the motion of perturbations along a vertical fiber �rf =0.029 cm� during �a� unsteady and �b� steady
behavior. Lighter gray level corresponds to thicker regions of the fluid interface and darker gray level corresponds to thinner regions; the
light characteristic lines indicate the location of perturbations along the fiber as a function of time. Experimental fluid: glycerol solution
�Qc=0.345 cm3 /s�, �a� Q=0.347 cm3 /s, �b� Q=0.336 cm3 /s, elapsed time=8.09 s, image height=8.22 cm. The top of each image is 0.58
cm below the orifice.
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thinner fiber �rf =0.010 cm�, the model agrees with two of
the glycerol solution experiments and overestimates the third
experiment by 4% �see Fig. 7�c��. We make a few observa-
tions based on the data shown in Figs. 6 and 7.

�1� Comparing Figs. 6�b� and 7�a�, we find that the Stokes
model more accurately predicts the growth rate of the veg-
etable oil perturbations than the moderate-Reynolds-number
model �note that the experimental data are the same in these
two figures�.

�2� The fiber in the glycerol solution experiments shown
in Fig. 7�b� was slightly off center, which may explain the
discrepancy between theory and data; however, the percent-
age error is larger in the vegetable oil experiments �Fig. 7�a��
where the fiber was on center.

�3� Recall that the long-wave moderate-Reynolds-number
model applies if �i� �2�1 and �ii� ��1 for small values of
�. In the experiments shown in Fig. 7, �2�O�10−1�, ��1,
and ��O�10−2� �see Table III�. We conclude that the param-
eter range of the experiments is out of the range for which
the moderate-Reynolds-number model applies, thus explain-
ing the discrepancy between theory and data in Fig. 7.

�4� The range of the measured amplitude growth rate in
experiments �indicated by the vertical bars in Figs. 6 and 7�
varies by fluid and flow rate. For castor oil �Fig. 6�a��, the
range is fairly small which we attribute to the low Reynolds
number �Re�O�10−2�� in the experiments. In 13 of the 14
data sets shown in Fig. 7, the range of growth rates is large.
Naively, one could attribute this to the higher Reynolds num-
ber in the experiments �10�Re�30�. This, however, is not
the complete picture. Notice that the range is significantly
smaller for the glycerol solution experiment at Q
=0.325 cm3 /s �blue data set in Fig. 7�b��. The difference in
this experiment compared to the other glycerol solution and
vegetable oil experiments is in the behavior of the perturba-
tions. The perturbation behavior in the experiments with a
large range of growth rates is unsteady, while the behavior in

the glycerol solution experiment shown in blue is steady.
�The notion of unsteady and steady perturbation behavior
will be explained in detail in Sec. IV.� Therefore, we find the
range of measured growth rates to be correlated with the
Reynolds number of the flow and the longer-time dynamics
of the perturbations.

Next, we examine the dynamics of perturbations after
their initial formation and explain the physical mechanism
that controls the known transition in the flow from unsteady
to steady perturbation behavior.

IV. STEADY AND UNSTEADY PERTURBATION
DYNAMICS

The dynamics of interfacial perturbations along an annu-
lar film flowing down a vertical fiber can be broken down
into three essential stages: �i� initial exponential growth of
the perturbation amplitude accompanied by variation in the
wavelength; �ii� nonlinear saturation of the perturbation am-
plitude and wavelength; and �iii� longer-time behavior in
which the perturbation wavelength may �unsteady—see Fig.
1� or may not �steady� vary along the fiber; this last stage has
been noted in other experimental studies �14,15,19�. Here we
explain the physical mechanism that controls this third stage
of dynamics.

In experiments with the thicker fiber �rf =0.029 cm�, we
observe that the perturbation motion abruptly transitions
from unsteady �regime a� to steady �regime b� behavior at a
critical flow rate Qc for all three fluids �Qc=0.0095 cm3 /s
for castor oil, 0.119 cm3 /s for vegetable oil, and
0.345 cm3 /s for glycerol solution� �26�, similar to observa-
tions made by Duprat et al. in their experiments with silicone
oil �19�. Following KDB �14�, we define the flow to be
steady if no perturbations coalesce as they travel down the
full length of the fiber ��2 m�, and unsteady otherwise,
while the flow is jetting from the orifice. An example of

FIG. 10. Space-time plot illustrating the motion of perturbations along a vertical fiber �rf =0.029 cm� during unsteady behavior. Experi-
mental fluid: glycerol solution; Q=0.516 cm3 /s, elapsed time=8.09 s, image height=8.22 cm. The top of the image is 0.58 cm below the
orifice.
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unsteady behavior in which two perturbations coalesce is
shown in Fig. 8. Note that we will not be examining the
dripping state, regime c �14�, which occurs at a lower flow
rate Qdrip�Qc. We find that the transition from unsteady
�Q�Qc� to steady �Qdrip�Q�Qc� behavior is robust in the
sense that, once an experiment transitions to steady behavior
�as the flow rate decreases�, it does not revert back to the
unsteady state. We note that steady perturbation behavior
was not observed in the glycerol solution experiments with
the thinner fiber �rf =0.010 cm�; instead, the flow transi-
tioned directly from regime a to c. Since our focus is on the
transition from unsteady to steady dynamics, we will not
consider this case further.

The space-time plots in Fig. 9 illustrate �a� unsteady and
�b� steady perturbation behavior for experiments with glyc-
erol solution �rf =0.029 cm�. Each plot is focused on 8.22
cm of the film, with the top of each plot located 0.58 cm
below the orifice; the time span of each plot is 8.09 s. The
plots are created by mapping the radius of the free surface of
the film, r=S�z , t�, to a gray level, with lighter gray corre-
sponding to thicker regions of the free surface and darker
gray corresponding to thinner regions. The light characteris-
tic lines in the plots indicate the location of perturbations as
they move down the fiber, and their slopes represent the
speed of the perturbations. Two features in the space-time
plots distinguish the unsteady and steady perturbation behav-
ior. First, the location along the fiber where perturbations
form �which we refer to as the boundary� oscillates irregu-
larly in the unsteady case and appears nearly fixed in the
steady case �26�. Second, in the unsteady case, perturbations
coalesce as faster-moving perturbations collide into slower-
moving perturbations �indicated by intersecting characteristic
lines�, whereas in the steady case perturbations do not coa-
lesce as they travel with the same terminal speed down the
fiber �indicated by parallel characteristic lines� �14,26�. The
longer-time motion of the perturbations appears to be corre-
lated with the motion of the boundary. Notice in Fig. 9�a�
that large spatial variations in the boundary modulate the
perturbation speed �i.e., the slope of the characteristic lines�,
which results in coalescence events later down the fiber. In
the steady case, there is no spatial variation in the boundary,
and, as a result, the perturbations remain equally spaced as
they travel with constant terminal speed down the full length
of the fiber �not shown in Fig. 9�b��. Our observations of the
steady case �regime b� are consistent with those of KDB
�14�. Given the robustness of the steady dynamics in all of
our experiments with the thicker fiber, we conclude that this
is not a transient state as CM report �15�. Finally, we note
that, when the flow is unsteady, the oscillation frequency of
the boundary increases with increasing flow rate; for ex-
ample, compare the boundary frequencies in Fig. 9�a�
�Q=0.347 cm3 /s� and Fig. 10 �Q=0.516 cm3 /s�.

To characterize the motion of the boundary, we measure
the distance from the orifice D at which each perturbation
initially forms along the fiber �at a fixed flow rate� using
edge-detection software; a perturbation is detected when its
amplitude ��� initially exceeds 1 /10 of a pixel or
�0.002 cm. The data shown in Fig. 11�a� correspond to the
space-time plots of the unsteady ��� and steady �+� experi-

ments shown in Fig. 9. Figure 11�b� is a plot of the average
distance from the orifice at which perturbations form, �Davg�,
as a function of flow rate in experiments with glycerol solu-
tion. The vertical bars represent the standard deviation of D
over all the perturbations measured at a fixed flow rate, and
the dotted vertical line represents the transition flow rate Qc.
The distance from the orifice at which perturbations form
increases monotonically with increasing flow rate. In the
steady case, at a given flow rate the distance is nearly con-
stant, whereas in the unsteady case, the range of distance
over which perturbations form increases with increasing flow
rate. These results are consistent with experimental observa-
tions made by Duprat et al. �19�.

To understand the physical mechanism controlling the
steady and unsteady states, we examine the power spectra of
D�t� in the glycerol solution experiments. Figures 12�a� and
12�b� represent the power spectra for the steady �+� and un-
steady ��� perturbation behavior shown in Fig. 11�a�. In the
steady case the fundamental frequency �f0�, which is the first
harmonic of the power spectrum, represents the rate at which
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FIG. 11. �a� The distance from the orifice �D� where perturba-
tions initially form along the fiber �i.e., the location of the bound-
ary� as a function of time, corresponding to the data shown in Fig.
9�a� for the unsteady case at Q=0.347 cm3 /s ��� and in Fig. 9�b�
for the steady case at Q=0.336 cm3 /s �+�. �b� Average distance
�Davg� from the orifice at which perturbations form as a function of
flow rate Q for experiments with glycerol solution �rf =0.029 cm�.
Vertical bars represent the standard deviation of D over all the per-
turbations measured at a given flow rate. The dotted vertical line
denotes the transition flow rate separating steady and unsteady per-
turbation behavior.
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perturbations form along the fiber �e.g., f0=14.45
perturbations/s in the experiment shown in Fig. 9�b��; in the
unsteady case the fundamental peak is much broader so that
f0 is less well defined. As a function of increasing flow rate,
the fundamental frequency �i.e., rate of perturbation forma-
tion� increases linearly when the perturbation dynamics are
steady �Q�Qc�, and is scattered over about �15
perturbations/s when the dynamics are unsteady �Q�Qc�
�see Fig. 13�a��. Another feature in the power spectra distin-
guishing steady and unsteady behavior is in the frequency
bandwidth supporting the fundamental peak; the bandwidth
of the unsteady spectrum is larger than the steady spectrum
in Fig. 12. We characterize the bandwidth of the fundamental
peak by measuring the interquartile region �IQR�. The IQR is
defined as the frequency bandwidth bounding the middle
50% of the �normalized� cumulative integrated power under
the fundamental peak; an example is shown in Fig. 13�b�
corresponding to the power spectra in Fig. 12�b� �32�. The
IQR, or bandwidth, measures the modulation of the funda-
mental frequency, or more physically, the modulation of the
rate at which perturbations form along the fiber. A jump in
the bandwidth occurs at the transition flow rate Qc in the
glycerol solution experiments, as shown in Fig. 14. For

Q�Qc, the bandwidth is nearly zero, thus the rate of pertur-
bation formation is nearly constant, resulting in longer-time
steady perturbation behavior. For Q�Qc, the bandwidth is
sizable and increases with increasing flow rate; thus there is
a significant modulation of the rate at which perturbations
form. It is this large modulation that results in the longer-
time unsteady dynamics of the perturbations. While the tran-
sition in Fig. 14 is striking, it is not entirely clear whether it
is a subcritical or supercritical transition, and, if subcritical,
whether the transition is hysteretic.

V. CONCLUSIONS

In an experimental study, we examine the motion of an
annular viscous film flowing under the influence of gravity
down the outside of a vertical fiber. We find the unperturbed
flow in our experiments is well approximated by a steady,
unidirectional, parallel flow. The dynamics of the perturbed
flow can be divided into three stages: �i� initial exponential
growth of the perturbation amplitude accompanied by varia-
tion in the perturbation wavelength; �ii� nonlinear saturation
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FIG. 13. �a� Fundamental frequency as a function of flow rate
measured from power spectra of D versus t data in experiments
with glycerol solution �rf =0.029 cm�. The dotted vertical line de-
notes the transition flow rate separating steady and unsteady pertur-
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FIG. 12. Power spectrum of the distance from the orifice D at
which perturbations form as a function of time. Plots correspond to
the data shown in Fig. 11�a� for �a� steady behavior �+� at
Q=0.336 cm3 /s and �b� unsteady behavior ��� at
Q=0.347 cm3 /s for glycerol solution. In the steady case, the fun-
damental frequency f0=14.45 Hz is the first harmonic in the power
spectrum. In the unsteady case, the bandwidth supporting the fun-
damental peak is larger than in the steady case.
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of the perturbation amplitude and wavelength; and �iii�
longer-time behavior in which the perturbation wavelength
may �unsteady� or may not �steady� vary along the film. Dur-
ing the first stage, we find that linear stability theory results
developed from a long-wave Stokes flow model �15� are in
excellent agreement with the initial growth of perturbations
measured in experiments. The agreement between linear sta-
bility results developed from a moderate-Reynolds-number
model �18� and experimental data depends on the fiber size;
in particular, the agreement is excellent for a thin fiber and
fair for a thicker fiber. The parameter range of our experi-
ments likely exceeds the requirements of the moderate-
Reynolds-number model, which explains these mixed results
and highlights the need for more analysis of annular flows in
the moderate-Reynolds-number limit.

A close examination of the longer-time steady and un-
steady behavior of interfacial perturbations is shown to be
correlated with �i� the rate of exponential growth of the per-
turbation amplitude; and �ii� the location along the fiber
where perturbations initially form. In particular, we find that
the rate of growth of the amplitude and the location along the
fiber where perturbations form are nearly constant for the
steady case, and vary over a range of values in the unsteady
case. Furthermore, we find that the transition in the longer-
time perturbation dynamics from unsteady to steady behavior
at a critical flow rate is correlated with a transition in the rate
at which perturbations naturally form along the free surface
of the film. In the steady case, the rate of perturbation for-
mation is nearly constant, resulting in the perturbations re-
maining equally spaced as they travel with the same terminal
speed down the fiber. In the unsteady case, the rate of per-
turbation formation is modulated, which results in the modu-
lation of the initial speed and spacing between perturbations
and ultimately leads to the coalescence of perturbations fur-
ther down the fiber. It is not clear whether this transition is
subcritical or supercritical, and, if subcritical, whether the
transition is hysteretic.
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APPENDIX

The formulas for the constant coefficients described in the
moderate-Reynolds-number dispersion relation �10� derived
by Sisoev et al. �18� are
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FIG. 14. Interquartile region, or frequency bandwidth, as a func-
tion of flow rate for the glycerol solution experiments �rf

=0.029 cm�. An abrupt transition in the bandwidth occurs at the
transition flow rate Qc.
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