35 research outputs found

    Comparative mitochondrial and chloroplast genomics of a genetically distinct form of Sargassum contributing to recent “Golden Tides” in the Western Atlantic

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 7 (2017): 516–525, doi:10.1002/ece3.2630.Over the past 5 years, massive accumulations of holopelagic species of the brown macroalga Sargassum in coastal areas of the Caribbean have created “golden tides” that threaten local biodiversity and trigger economic losses associated with beach deterioration and impact on fisheries and tourism. In 2015, the first report identifying the cause of these extreme events implicated a rare form of the holopelagic species Sargassum natans (form VIII). However, since the first mention of S. natans VIII in the 1930s, based solely on morphological characters, no molecular data have confirmed this identification. We generated full-length mitogenomes and partial chloroplast genomes of all representative holopelagic Sargassum species, S. fluitans III and S. natans I alongside the putatively rare S. natans VIII, to demonstrate small but consistent differences between S. natans I and VIII (7 bp differences out of the 34,727). Our comparative analyses also revealed that both S. natans I and S. natans VIII share a very close phylogenetic relationship with S. fluitans III (94- and 96-bp differences of 34,727). We designed novel primers that amplified regions of the cox2 and cox3 marker genes with consistent polymorphic sites that enabled differentiation between the two S. natans forms (I and VIII) from each other and both from S. fluitans III in over 150 Sargassum samples including those from the 2014 golden tide event. Despite remarkable gene synteny and sequence conservation, the three Sargassum forms differ in morphology, ecology, and distribution patterns, warranting more extensive interrogation of holopelagic Sargassum genomes as a whole.This work was supported by a US National Science Foundation (NSF) collaborative grant to LAA-Z (OCE-1155571) and ERZ (OCE-1155379), and an NSF TUES grant (DUE-1043468) to LAA-Z and ER

    Ancient DNA Elucidates the Controversy about the Flightless Island Hens (Gallinula sp.) of Tristan da Cunha

    Get PDF
    A persistent controversy surrounds the flightless island hen of Tristan da Cunha, Gallinula nesiotis. Some believe that it became extinct by the end of the 19th century. Others suppose that it still inhabits Tristan. There is no consensus about Gallinula comeri, the name introduced for the flightless moorhen from the nearby island of Gough. On the basis of DNA sequencing of both recently collected and historical material, we conclude that G. nesiotis and G. comeri are different taxa, that G. nesiotis indeed became extinct, and that G. comeri now inhabits both islands. This study confirms that among gallinules seemingly radical adaptations (such as the loss of flight) can readily evolve in parallel on different islands, while conspicuous changes in other morphological characters fail to occur

    Rapid loss of flight in the Aldabra white-throated rail

    Get PDF
    Flight loss has evolved independently in numerous island bird lineages worldwide, and particularly in rails (Rallidae). The Aldabra white-throated rail (Dryolimnas [cuvieri] aldabranus) is the last surviving flightless bird in the western Indian Ocean, and the only living flightless subspecies within Dryolimnas cuvieri, which is otherwise volant across its extant range. Such a difference in flight capacity among populations of a single species is unusual, and could be due to rapid evolution of flight loss, or greater evolutionary divergence than can readily be detected by traditional taxonomic approaches. Here we used genetic and morphological analyses to investigate evolutionary trajectories of living and extinct Dryolimnas cuvieri subspecies. Our data places D. [c.] aldabranus among the most rapid documented avian flight loss cases (within an estimated maximum of 80,000–130,000 years). However, the unusual intraspecific variability in flight capacity within D. cuvieri is best explained by levels of genetic divergence, which exceed those documented between other volant taxa versus flightless close relatives, all of which have full species status. Our results also support consideration of Dryolimnas [cuvieri] aldabranus as sufficiently evolutionary distinct from D. c. cuvieri to warrant management as an evolutionary significant unit. Trait variability among closely related lineages should be considered when assessing conservation status, particularly for traits known to influence vulnerability to extinction (e.g. flightlessness)

    Frequent Detection of Highly Diverse Variants of Cardiovirus, Cosavirus, Bocavirus, and Circovirus in Sewage Samples Collected in the United States▿

    No full text
    Untreated sewage samples from 12 cities in the United States were screened for the presence of recently characterized RNA and DNA viruses found at high prevalence in the stool specimens of South Asian children. Genetic variants of human cosaviruses and cardioviruses in the Picornaviridae family and of DNA circoviruses and human bocaviruses were detected, expanding the known genetic diversity and geographic range of these newly identified viruses. All four virus groups were detected in sewage samples of less than a milliliter from multiple U.S. cities. PCR screening of particle-protected viral nucleic acid in sewage samples could therefore rapidly establish the presence and determine the diversity of four newly described enteric viruses in large urban populations. More frequent and deeper sampling of viral nucleic acids in sewage samples could be used to monitor changes in the prevalence and genetic composition of these and other novel enteric viruses
    corecore