3,121 research outputs found

    Biases in Expansion Distances of Novae Arising from the Prolate Geometry of Nova Shells

    Get PDF
    (abridged) Expansion distances (or expansion parallaxes) for classical novae are based on comparing a measurement of the shell expansion velocity, multiplied by the time since outburst, with some measure of the angular size of the shell. We review and formalize this method in the case of prolate spheroidal shells. We present expressions for the maximum line-of-sight velocity from a complete, expanding shell and for its projected major and minor axes, in terms of the intrinsic axis ratio and the inclination of the polar axis to the line of sight. For six distinct definitions of ``angular size'', we tabulate the error in distance that is introduced under the assumption of spherical symmetry (i.e., without correcting for inclination and axis ratio). The errors can be significant and systematic, affecting studies of novae whether considered individually or statistically. Each of the six estimators overpredicts the distance when the polar axis is close to the line of sight, and most underpredict the distance when the polar axis is close to the plane of the sky. The straight mean of the projected semimajor and semiminor axes gives the least distance bias for an ensemble of randomly oriented prolate shells. The best individual expansion distances, however, result from a full spatio-kinematic modeling of the nova shell. We discuss several practical complications that affect expansion distance measurements of real nova shells. Nova shell expansion distances be based on velocity and angular size measurements made contemporaneously if possible, and the same ions and transitions should be used for the imaging and velocity measurements. We emphasize the need for complete and explicit reporting of measurement procedures and results, regardless of the specific method used.Comment: 21 pages, LaTeX, uses aasms4.sty, to be published in Publ. Astron. Soc. of the Pacific, May 200

    Generation of spin-wave dark solitons with phase engineering

    Full text link
    We generate experimentally spin-wave envelope dark solitons from rectangular high-frequency dark input pulses with externally introduced phase shifts in yttrium-iron garnet magnetic fims. We observe the generation of both odd and even numbers of magnetic dark solitons when the external phase shift varies. The experimental results are in a good qualitative agreement with the theory of the dark-soliton generation in magnetic films developed earlier [Phys. Rev. Lett. 82, 2583 (1999)].Comment: 6 pages, including 7 figures, submitted to Phys. Rev.

    AlGaAs heterojunction lasers

    Get PDF
    The characterization of 8300 A lasers was broadened, especially in the area of beam quality. Modulation rates up to 2 Gbit/sec at output powers of 20 mW were observed, waveform fidelity was fully adequate for low BER data transmission, and wavefront measurements showed that phase aberrations were less than lamda/50. Also, individually addressable arrays of up to ten contiguous diode lasers were fabricated and tested. Each laser operates at powers up to 30 mW CW in single spatial mode. Shifting the operating wavelength of the basic CSP laser from 8300 A to 8650 A was accomplished by the addition of Si to the active region. Output power has reached 100 mW single mode, with excellent far field wave front properties. Operating life is currently approx. 1000 hrs at 35 mW CW. In addition, laser reliability, for operation at both 8300 A and 8650 A, has profited significantly from several developments in the processing procedures

    Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    Full text link
    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.Comment: 46 pages, 5 figures, 2 table

    High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    Get PDF
    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described

    Farewell, Prosperity!

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/3898/thumbnail.jp

    Non-resonant wave front reversal of spin waves used for microwave signal processing

    Full text link
    It is demonstrated that non-resonant wave front reversal (WFR) of spin-wave pulses caused by pulsed parametric pumping can be effectively used for microwave signal processing. When the frequency band of signal amplification by pumping is narrower than the spectral width of the signal, the non-resonant WFR can be used for the analysis of the signal spectrum. In the opposite case the non-resonant WFR can be used for active (with amplification) filtering of the input signal.Comment: 4 pages, 3 figure
    corecore