64 research outputs found

    Single-particle characterization of the high-Arctic summertime aerosol

    Get PDF
    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker <i>Oden</i> and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region

    Cloud condensation nuclei closure study on summer arctic aerosol

    Get PDF
    We present an aerosol – cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker &lt;i&gt;Oden&lt;/i&gt;. The data presented here were collected during a three-week time period in the pack ice (&gt;85&amp;deg; N) when the icebreaker &lt;i&gt;Oden&lt;/i&gt; was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. &lt;br&gt;&lt;br&gt; CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles &gt;70 nm. &lt;br&gt;&lt;br&gt; For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble (&amp;kappa;&lt;sub&gt;org&lt;/sub&gt;=0.02), leading to a mean total κ, &amp;kappa;&lt;sub&gt;tot&lt;/sub&gt;, of 0.33 &amp;plusmn; 0.13. However, several settings led to closure and &amp;kappa;&lt;sub&gt;org&lt;/sub&gt;=0.2 is found to be an upper limit at 0.1% supersaturation. &amp;kappa;&lt;sub&gt;org&lt;/sub&gt;≤0.2 leads to a &amp;kappa;&lt;sub&gt;tot&lt;/sub&gt; range of 0.33 &amp;plusmn; 013 to 0.50 &amp;plusmn; 0.11. Thus, the organic material ranges from being sparingly soluble to effectively insoluble. These results suggest that an increase in organic mass fraction in particles of a certain size would lead to a suppression of the Arctic CCN activity

    Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 1: Immersion freezing

    Get PDF
    Desert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies over several decades. Recently some feldspar species were identified to be ice active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase. For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands, and the Sinai Peninsula). Additionally, 11 dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore, we investigated how representative surface-collected dust is for the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC setup to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233 and 250 K. Dust particles were collected in parallel on filters for offline cold-stage ice nucleation experiments at 253–263 K. To help the interpretation of the ice nucleation experiments the mineralogical composition of the dusts was investigated. We find that a higher ice nucleation activity in a given sample at 253 K can be attributed to the K-feldspar content present in this sample, whereas at temperatures between 238 and 245 K it is attributed to the sum of feldspar and quartz content present. A high clay content, in contrast, is associated with lower ice nucleation activity. This confirms the importance of feldspar above 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower temperatures as found by earlier studies for monomineral dusts. The airborne samples show on average a lower ice nucleation activity than the surface-collected ones. Furthermore, we find that under certain conditions milling can lead to a decrease in the ice nucleation ability of polymineral samples due to the different hardness and cleavage of individual mineral phases causing an increase of minerals with low ice nucleation ability in the atmospherically relevant size fraction. Comparison of our data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modeling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key, while other minerals are only of minor importance

    Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation

    Get PDF
    During the FROST-2 (FReezing Of duST) measurement campaign conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS), we investigated changes in the ice nucleation properties of 300 nm Arizona Test Dust mineral particles following thermochemical processing by varying amounts and combinations of exposure to sulphuric acid vapour, ammonia gas, water vapour, and heat. The processed particles' heterogeneous ice nucleation properties were determined in both the water subsaturated and supersaturated humidity regimes at −30 °C and −25 °C using Colorado State University's continuous flow diffusion chamber. The amount of sulphuric acid coating material was estimated by an aerosol mass spectrometer and from CCN-derived hygroscopicity measurements. The condensation of sulphuric acid decreased the dust particles' ice nucleation ability in proportion to the amount of sulphuric acid added. Heating the coated particles in a thermodenuder at 250 °C – intended to evaporate the sulphuric acid coating – reduced their freezing ability even further. We attribute this behaviour to accelerated acid digestion of ice active surface sites by heat. Exposing sulphuric acid coated dust to ammonia gas produced particles with similarly poor freezing potential; however a portion of their ice nucleation ability could be restored after heating in the thermodenuder. In no case did any combination of thermochemical treatments increase the ice nucleation ability of the coated mineral dust particles compared to unprocessed dust. These first measurements of the effect of identical chemical processing of dust particles on their ice nucleation ability under both water subsaturated and mixed-phase supersaturated cloud conditions revealed that ice nucleation was more sensitive to all coating treatments in the water subsaturated regime. The results clearly indicate irreversible impairment of ice nucleation activity in both regimes after condensation of concentrated sulphuric acid. This implies that the sulphuric acid coating caused permanent chemical and/or physical modification of the ice active surface sites; the possible dissolution of the coating during droplet activation did not restore all immersion/condensation-freezing ability

    Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany

    Get PDF
    Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between 109 and 1011m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source of the increased ice nucleation efficiency.Fil: Steinke, I.. Karlsruhe Institute of Technology; AlemaniaFil: Funk, R.. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Busse, J.. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Iturri, Laura Antonela. Universidad Nacional de La Pampa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Kirchen, S.. Karlsruhe Institute of Technology; AlemaniaFil: Leue, M.. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Möhler, O.. Karlsruhe Institute of Technology; AlemaniaFil: Schwartz, T.. Universidad Nacional de La Pampa; ArgentinaFil: Schnaiter, M.. Karlsruhe Institute of Technology; AlemaniaFil: Sierau, B.. Institute for Atmospheric and Climate Science; SuizaFil: Toprak, E.. Karlsruhe Institute of Technology; AlemaniaFil: Ullrich, R.. Karlsruhe Institute of Technology; AlemaniaFil: Ulrich, A.. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Hoose, C.. Karlsruhe Institute of Technology; AlemaniaFil: Leisner, T.. Karlsruhe Institute of Technology; Alemania. Heidelberg University; Alemani

    Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 2: Deposition nucleation and condensation freezing

    Get PDF
    Mineral dust particles from deserts are amongst the most common ice nucleating particles in the atmosphere. The mineralogy of desert dust differs depending on the source region and can further fractionate during the dust emission processes. Mineralogy to a large extent explains the ice nucleation behavior of desert aerosol, but not entirely. Apart from pure mineral dust, desert aerosol particles often exhibit a coating or are mixed with small amounts of biological material. Aging on the ground or during atmospheric transport can deactivate nucleation sites, thus strong ice nucleating minerals may not exhibit their full potential. In the partner paper of this work, it was shown that mineralogy determines most but not all of the ice nucleation behavior in the immersion mode found for desert dust. In this study, the influence of semi-volatile organic compounds and the presence of crystal water on the ice nucleation behavior of desert aerosol is investigated. This work focuses on the deposition and condensation ice nucleation modes at temperatures between 238 and 242&thinsp;K of 18 dust samples sourced from nine deserts worldwide. Chemical imaging of the particles' surface is used to determine the cause of the observed differences in ice nucleation. It is found that, while the ice nucleation ability of the majority of the dust samples is dominated by their quartz and feldspar content, in one carbonaceous sample it is mostly caused by organic matter, potentially cellulose and/or proteins. In contrast, the ice nucleation ability of an airborne Saharan sample is found to be diminished, likely by semi-volatile species covering ice nucleation active sites of the minerals. This study shows that in addition to mineralogy, other factors such as organics and crystal water content can alter the ice nucleation behavior of desert aerosol during atmospheric transport in various ways.</p

    Experimental study of the role of physicochemical surface processing on the in ability of mineral dust particles

    Get PDF
    During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between-40 °C ≤ T ≤-28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles\u27 IN potential significantly decreasing in the first freezing branch (T \u3e -35 °C) and a slight increase in the second branch (T ≤-35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles\u27 IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated
    • …
    corecore