1,633 research outputs found
AdS/CFT correspondence via R-current correlation functions revisited
Motivated by realizing open/closed string duality in the work by Gopakumar
[Phys. Rev. D70:025009,2004], we study two and three-point correlation
functions of R-current vector fields in N=4 super Yang-Mills theory. These
correlation functions in free field limit can be derived from the worldline
formalism and written as heat kernel integrals in the position space. We show
that reparametrizing these integrals converts them to the expected AdS
supergravity results which are known in terms of bulk to boundary propagator.
We expect that this reparametrization corresponds to transforming open string
moduli parameterization to the closed string ones.Comment: 23 pages, v2: calculations clarified, references added, v3: sections
re-arranged with more explanations, 4 figures and an appendix adde
Benchmark calculations for elastic fermion-dimer scattering
We present continuum and lattice calculations for elastic scattering between
a fermion and a bound dimer in the shallow binding limit. For the continuum
calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to
determine the scattering length and effective range parameter to high
precision. For the lattice calculation we use the finite-volume method of
L\"uscher. We take into account topological finite-volume corrections to the
dimer binding energy which depend on the momentum of the dimer. After
subtracting these effects, we find from the lattice calculation kappa a_fd =
1.174(9) and kappa r_fd = -0.029(13). These results agree well with the
continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained
from the STM equation. We discuss applications to cold atomic Fermi gases,
deuteron-neutron scattering in the spin-quartet channel, and lattice
calculations of scattering for nuclei and hadronic molecules at finite volume.Comment: 16 pages, 5 figure
Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets
The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties
Luminescent hyperbolic metasurfaces.
When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells
Recommended from our members
A parametric study of fear generalization to faces and non-face objects: relationship to discrimination thresholds
Fear generalization is the production of fear responses to a stimulus that is similar—but not identical—to a threatening stimulus. Although prior studies have found that fear generalization magnitudes are qualitatively related to the degree of perceptual similarity to the threatening stimulus, the precise relationship between these two functions has not been measured systematically. Also, it remains unknown whether fear generalization mechanisms differ for social and non-social information. To examine these questions, we measured perceptual discrimination and fear generalization in the same subjects, using images of human faces and non-face control stimuli (“blobs”) that were perceptually matched to the faces. First, each subject’s ability to discriminate between pairs of faces or blobs was measured. Each subject then underwent a Pavlovian fear conditioning procedure, in which each of the paired conditioned stimuli (CS) were either followed (CS+) or not followed (CS−) by a shock. Skin conductance responses (SCRs) were also measured. Subjects were then presented with the CS+, CS− and five levels of a CS+-to-CS− morph continuum between the paired stimuli, which were identified based on individual discrimination thresholds. Finally, subjects rated the likelihood that each stimulus had been followed by a shock. Subjects showed both autonomic (SCR-based) and conscious (ratings-based) fear responses to morphs that they could not discriminate from the CS+ (generalization). For both faces and non-face objects, fear generalization was not found above discrimination thresholds. However, subjects exhibited greater fear generalization in the shock likelihood ratings compared to the SCRs, particularly for faces. These findings reveal that autonomic threat detection mechanisms in humans are highly sensitive to small perceptual differences between stimuli. Also, the conscious evaluation of threat shows broader generalization than autonomic responses, biased towards labeling a stimulus as threatening
Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences
Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.
Features and design intent in engineering sketches
We investigate the problem of determining design intent from engineering sketches: what did the designer have in mind when sketching a component? Specifically, we consider the unidirectional reverse mapping from form features, as determined from an input sketch, to design features, representing the design intent present in the designer’s mind. We introduce a list of com- mon engineering form features. For each, we list which geometrical cues may be helpful in identifying these features in design sketches, and we list the design features which such form features commonly imply. We show that a reductionist approach which decomposes a diagram into form features can be used to deduce the design intent of the object portrayed in a drawing. We supply experimental results in support of this idea
Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study.
OBJECTIVES: Preclinical data suggest an important role for the sarcoma proto-oncogene tyrosine kinase (SRC) in the oncogenesis of epithelial ovarian cancer (EOC) or primary peritoneal carcinoma (PPC). The Gynecologic Oncology Group (GOG) conducted a Phase II trial to evaluate the efficacy and safety of dasatinib, an oral SRC-family inhibitor in EOC/PPC, and explored biomarkers for possible association with clinical outcome.
METHODS: Eligible women had measurable, recurrent or persistent EOC/PPC and had received one or two prior regimens which must have contained a platinum and a taxane. Patients were treated with 100mg orally daily of dasatinib continuously until progression of disease or adverse effects prevented further treatment. Primary endpoints were progression-free survival (PFS)≥6months and response rate. Serial plasma samples were assayed for multiple biomarkers. Circulating free DNA was quantified as were circulating tumor and endothelial cells.
RESULTS: Thirty-five (35) patients were enrolled in a two-stage sequential design. Of the 34 eligible and evaluable patients, 20.6% (90% confidence interval: 10.1%, 35.2%) had a PFS≥6months; there were no objective responses. Grade 3-4 toxicities were gastrointestinal (mostly nausea and emesis; n=4), pulmonary (dyspnea and/or pleural effusion; n=4) and pain (n=5), and infrequent instances of anemia, malaise, insomnia, rash, and central nervous system hemorrhage. Lack of clinical activity limited any correlation of biomarkers with outcome.
CONCLUSION: Dasatinib has minimal activity as a single-agent in patients with recurrent EOC/PPC
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
- …
