572 research outputs found

    Marginal deformations in string field theory

    Get PDF
    We describe a method for obtaining analytic solutions corresponding to exact marginal deformations in open bosonic string field theory. For the photon marginal deformation we have an explicit analytic solution to all orders. Our construction is based on a pure gauge solution where the gauge field is not in the Hilbert space. We show that the solution itself is nevertheless perfectly regular. We study its gauge transformations and calculate some coefficients explicitly. Finally, we discuss how our method can be implemented for other marginal deformations.Comment: 23 pages. v2: Some paragraphs improved, typos corrected, ref adde

    Non-linear analysis of two-layer timber beams considering interlayer slip and uplift

    Get PDF
    A new mathematical model and its finite element formulation for the non-linear analysis of mechanical behaviour of a two-layer timber planar beam is presented. A modified principle of virtual work is employed in formulating the finite element method. The basic unknowns are strains. The following assumptions are adopted in the mathematical model: materials are taken to be non-linear and can differ from layer to layer; interacting shear and normal contact tractions between layers are derived from the non-linear shear contact traction-slip and the non-linear normal contact traction-uplift characteristics of the connectors; the geometrically linear and materially non-linear Bernoulli's beam theory is assumed for each layer. The formulation is found to be accurate, reliable and computationally effective. The suitability of the theory is validated by the comparison of the numerical solution and the experimental results of full-scale laboratory tests on a simply supported beam. An excellent agreement between measured and calculated results is observed for all load levels. The further objective of the paper is the analysis of the effect of different normal contact traction-uplift constitutive relationships on the kinematic and static quantities in a statically determined and undetermined structure. While the shear contact traction-slip constitutive relationship dictates the deformability of the composite beam and has a substantial influence on most of the static and kinematic quantities of the composite beam, a variable normal contact traction-uplift constitutive relationship is in most cases negligible

    Tachyon Vacuum Solution in Open String Field Theory with Constant B Field

    Full text link
    We show that Schnabl's tachyon vacuum solution is an exact solution of the equation of motion of Witten's open bosonic string field theory in the background of constant antisymmetric two-form field. The action computed at the vacuum solution is given by the Dirac-Born-Infeld factor multiplied to that without the antisymmetric tensor field.Comment: 8 page

    Boundary State from Ellwood Invariants

    Full text link
    Boundary states are given by appropriate linear combinations of Ishibashi states. Starting from any OSFT solution and assuming Ellwood conjecture we show that every coefficient of such a linear combination is given by an Ellwood invariant, computed in a slightly modified theory where it does not trivially vanish by the on-shell condition. Unlike the previous construction of Kiermaier, Okawa and Zwiebach, ours is linear in the string field, it is manifestly gauge invariant and it is also suitable for solutions known only numerically. The correct boundary state is readily reproduced in the case of known analytic solutions and, as an example, we compute the energy momentum tensor of the rolling tachyon from the generalized invariants of the corresponding solution. We also compute the energy density profile of Siegel-gauge multiple lump solutions and show that, as the level increases, it correctly approaches a sum of delta functions. This provides a gauge invariant way of computing the separations between the lower dimensional D-branes.Comment: v2: 63 pages, 14 figures. Major improvements in section 2. Version published in JHE

    Zeeman Spectroscopy of the Star Algebra

    Get PDF
    We solve the problem of finding all eigenvalues and eigenvectors of the Neumann matrix of the matter sector of open bosonic string field theory, including the zero modes, and switching on a background B-field. We give the discrete eigenvalues as roots of transcendental equations, and we give analytical expressions for all the eigenvectors.Comment: (1, 25) pages, 2 Figure

    Vacuum String Field Theory ancestors of the GMS solitons

    Get PDF
    We define a sequence of VSFT D-branes whose low energy limit leads exactly to a corresponding sequence of GMS solitons. The D-branes are defined by acting on a fixed VSFT lump with operators defined by means of Laguerre polynomials whose argument is quadratic in the string creation operators. The states obtained in this way form an algebra under the SFT star product, which is isomorphic to a corresponding algebra of GMS solitons under the Moyal product. In order to obtain a regularized field theory limit we embed the theory in a constant background B field.Comment: 1+16 pages; v2: typos corrected; v3: two appendices added, final versio

    Disk Partition Function and Oscillatory Rolling Tachyons

    Full text link
    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et. al. and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same.Comment: 17 pages, 2 figures. v4: discussion clarified, appendix added, conclusions unchanged; version to appear in J.Phys.

    Experimental String Field Theory

    Get PDF
    We develop efficient algorithms for level-truncation computations in open bosonic string field theory. We determine the classical action in the universal subspace to level (18,54) and apply this knowledge to numerical evaluations of the tachyon condensate string field. We obtain two main sets of results. First, we directly compute the solutions up to level L=18 by extremizing the level-truncated action. Second, we obtain predictions for the solutions for L > 18 from an extrapolation to higher levels of the functional form of the tachyon effective action. We find that the energy of the stable vacuum overshoots -1 (in units of the brane tension) at L=14, reaches a minimum E_min = -1.00063 at L ~ 28 and approaches with spectacular accuracy the predicted answer of -1 as L -> infinity. Our data are entirely consistent with the recent perturbative analysis of Taylor and strongly support the idea that level-truncation is a convergent approximation scheme. We also check systematically that our numerical solution, which obeys the Siegel gauge condition, actually satisfies the full gauge-invariant equations of motion. Finally we investigate the presence of analytic patterns in the coefficients of the tachyon string field, which we are able to reliably estimate in the L -> infinity limit.Comment: 37 pages, 6 figure

    The dual of Janus -:- an interface CFT

    Full text link
    We propose and study a specific gauge theory dual of the smooth, non-supersymmetric (and apparently stable) Janus solution of Type IIB supergravity found in hep-th/0304129. The dual field theory is N=4 SYM theory on two half-spaces separated by a planar interface with different coupling constants in each half-space. We assume that the position dependent coupling multiplies the operator L' which is the fourth descendent of the primary Tr(X^I X^J) and closely related to the N=4 Lagrangian density. At the classical level supersymmetry is broken explicitly, but SO(3,2) conformal symmetry is preserved. We use conformal perturbation theory to study various correlation functions to first and second order in the discontinuity of g^2_{YM}, confirming quantum level conformal symmetry. Certain quantities such as the vacuum expectation value are protected to all orders in g^2_{YM}N, and we find perfect agreement between the weak coupling value in the gauge theory and the strong coupling gravity result. SO(3,2) symmetry requires vanishing vacuum energy, =0, and this is confirmed in first order in the discontinuity.Comment: 24 pages, 1 figure; references adde

    Ghost story. II. The midpoint ghost vertex

    Full text link
    We construct the ghost number 9 three strings vertex for OSFT in the natural normal ordering. We find two versions, one with a ghost insertion at z=i and a twist-conjugate one with insertion at z=-i. For this reason we call them midpoint vertices. We show that the relevant Neumann matrices commute among themselves and with the matrix GG representing the operator K1. We analyze the spectrum of the latter and find that beside a continuous spectrum there is a (so far ignored) discrete one. We are able to write spectral formulas for all the Neumann matrices involved and clarify the important role of the integration contour over the continuous spectrum. We then pass to examine the (ghost) wedge states. We compute the discrete and continuous eigenvalues of the corresponding Neumann matrices and show that they satisfy the appropriate recursion relations. Using these results we show that the formulas for our vertices correctly define the star product in that, starting from the data of two ghost number 0 wedge states, they allow us to reconstruct a ghost number 3 state which is the expected wedge state with the ghost insertion at the midpoint, according to the star recursion relation.Comment: 60 pages. v2: typos and minor improvements, ref added. To appear in JHE
    corecore