3,063 research outputs found
Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes
We investigate hole transport in polymer light-emitting-diodes in which the
emissive layer is made of liquid-crystalline polymer chains aligned
perpendicular to the direction of transport. Calculations of the current as a
function of time via a random-walk model show excellent qualitative agreement
with experiments conducted on electroluminescent polyfluorene demonstrating
non-dispersive hole transport. The current exhibits a constant plateau as the
charge carriers move with a time-independent drift velocity, followed by a long
tail when they reach the collecting electrode. Variation of the parameters
within the model allows the investigation of the transition from non-dispersive
to dispersive transport in highly aligned polymers. It turns out that large
inter-chain hopping is required for non-dispersive hole transport and that
structural disorder obstructs the propagation of holes through the polymer
film.Comment: 4 pages, 5 figure
Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data
A continuous time random walk model for financial distributions
We apply the formalism of the continuous time random walk to the study of
financial data. The entire distribution of prices can be obtained once two
auxiliary densities are known. These are the probability densities for the
pausing time between successive jumps and the corresponding probability density
for the magnitude of a jump. We have applied the formalism to data on the US
dollar/Deutsche Mark future exchange, finding good agreement between theory and
the observed data.Comment: 14 pages, 5 figures, revtex4, submitted for publicatio
Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking
Anomalous diffusion has been widely observed by single particle tracking
microscopy in complex systems such as biological cells. The resulting time
series are usually evaluated in terms of time averages. Often anomalous
diffusion is connected with non-ergodic behaviour. In such cases the time
averages remain random variables and hence irreproducible. Here we present a
detailed analysis of the time averaged mean squared displacement for systems
governed by anomalous diffusion, considering both unconfined and restricted
(corralled) motion. We discuss the behaviour of the time averaged mean squared
displacement for two prominent stochastic processes, namely, continuous time
random walks and fractional Brownian motion. We also study the distribution of
the time averaged mean squared displacement around its ensemble mean, and show
that this distribution preserves typical process characteristic even for short
time series. Recently, velocity correlation functions were suggested to
distinguish between these processes. We here present analytucal expressions for
the velocity correlation functions. Knowledge of the results presented here are
expected to be relevant for the correct interpretation of single particle
trajectory data in complex systems.Comment: 15 pages, 15 figures; References adde
Iron, oxidative stress, and virulence : roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus.
The gene SRE1, encoding the GATA transcription factor siderophore biosynthesis repressor (Sre1), was identified in the genome of the maize pathogen Cochliobolus heterostrophus and deleted. Mutants were altered in sensitivity to iron, oxidative stress, and virulence to the host. To gain insight into mechanisms of this combined regulation, genetic interactions among SRE1 (the nonribosomal peptide synthetase encoding gene NPS6, which is responsible for extracellular siderophore biosynthesis) and ChAP1 (encoding a transcription factor regulating redox homeostasis) were studied. To identify members of the Sre1 regulon, expression of candidate iron and oxidative stress-related genes was assessed in wild-type (WT) and sre1 mutants using quantitative reverse-transcription polymerase chain reaction. In sre1 mutants, NPS6 and NPS2 genes, responsible for siderophore biosynthesis, were derepressed under iron replete conditions, whereas the high-affinity reductive iron uptake pathway associated gene, FTR1, was not, in contrast to outcomes with other well-studied fungal models. C. heterostrophus L-ornithine-N(5)- monooxygenase (SIDA2), ATP-binding cassette (ABC6), catalase (CAT1), and superoxide dismutase (SOD1) genes were also derepressed under iron-replete conditions in sre1 mutants. Chap1nps6 double mutants were more sensitive to oxidative stress than either Chap1 or nps6 single mutants, while Chap1sre1 double mutants showed a modest increase in resistance compared with single Chap1 mutants but were much more sensitive than sre1 mutants. These findings suggest that the NPS6 siderophore indirectly contributes to redox homeostasis via iron sequestration, while Sre1 misregulation may render cells more sensitive to oxidative stress. The double-mutant phenotypes are consistent with a model in which iron sequestration by NPS6 defends the pathogen against oxidative stress. C. heterostrophus sre1, nps6, Chap1, Chap1nps6, and Chap1sre1 mutants are all reduced in virulence toward the host, compared with the WT
Recommended from our members
EHMTI-0184. Ictal adiponectin levels are modulated by pain severity and treatment response in episodic migraineurs
Implications of reflectance measurements on the mechanism for superconductivity in MgB
Recent optical studies in c-axis oriented superconducting MgB films
indicate that the electron-phonon coupling is weak [tu01]. We reinforce this
conclusion by examining the raw reflectance data; its frequency dependence is
incompatible with strong electron-phonon scattering. This is further
strengthened by analysis of the real part of the conductivity, and by the
temperature dependence of the effective Drude scattering rate. Using a
realistic electron-phonon spectral shape [kong01], we find , in agreement with Tu et al. [tu01]. To the extent that
, this disagrees sharply with model
calculations [kong01,kortus01,an01], and is far too low to provide the means
for K. A simple model is constructed with coupling to a high
frequency excitation, which is consistent with both the low frequency optical
data and the high .Comment: 4 pages, 4 figure
Favorable outcome of early treatment of new onset child and adolescent migraine-implications for disease modification.
There is evidence that the prevalence of migraine in children and adolescents may be increasing. Current theories of migraine pathophysiology in adults suggest activation of central cortical and brainstem pathways in conjunction with the peripheral trigeminovascular system, which ultimately results in release of neuropeptides, facilitation of central pain pathways, neurogenic inflammation surrounding peripheral vessels, and vasodilatation. Although several risk factors for frequent episodic, chronic, and refractory migraine have been identified, the causes of migraine progression are not known. Migraine pathophysiology has not been fully evaluated in children. In this review, we will first discuss the evidence that early therapeutic interventions in the child or adolescent new onset migraineur, may halt or limit progression and disability. We will then review the evidence suggesting that many adults with chronic or refractory migraine developed their migraine as children or adolescents and may not have been treated adequately with migraine-specific therapy. Finally, we will show that early, appropriate and optimal treatment of migraine during childhood and adolescence may result in disease modification and prevent progression of this disease
Localized and Delocalized Charge Transport in Single-Wall Carbon-Nanotube Mats
We measured the complex dielectric constant in mats of single-wall
carbon-nanotubes between 2.7 K and 300 K up to 0.5 THz. The data are well
understood in a Drude approach with a negligible temperature dependence of the
plasma frequency (omega_p) and scattering time (tau) with an additional
contribution of localized charges. The dielectric properties resemble those of
the best ''metallic'' polypyrroles and polyanilines. The absence of metallic
islands makes the mats a relevant piece in the puzzle of the interpretation of
tau and omega_p in these polymers.Comment: 4 pages including 4 figure
- …
