511 research outputs found

    Thermomechanical Behavior of the HL-LHC 11 Tesla Nb3Sn Magnet Coil Constituents during Reaction Heat Treatment

    Full text link
    The knowledge of the temperature induced changes of the superconductor volume, and of the thermo-mechanical behaviour of the different coil and tooling materials is required for predicting the coil geometry and the stress distribution in the coil after the Nb3Sn reaction heat treatment. In the present study we have measured the Young's and shear moduli of the HL-LHC 11 T Nb3Sn dipole magnet coil and reaction tool constituents during in situ heat cycles with the dynamic resonance method. The thermal expansion behaviours of the coil components and of a free standing Nb3Sn wire were compared based on dilation experiments.Comment: 6 pages, 12 figures, presented at MT25 conferenc

    Formation des ions bromate dans une colonne à bulles: Effets du peroxyde d'hydrogène lors de l'ozonation

    Get PDF
    L'utilisation de l'ozone, aujourd'hui très répandue dans les filières de potabilisation, n'est pas sans effet secondaire. De nombreux sous-produits peuvent se former comme notamment les ions bromates, sous produits finaux d'oxydation des bromures contenus dans les eaux. Malheureusement, le mécanisme de production de cette espèce est complexe et dépend de nombreux paramètres difficiles à appréhender.Sur une installation pilote de type colonne à bulles fonctionnant à contre-courant, nous avons étudié l'influence de différents paramètres, comme le pH, le temps de contact, la dose d'ozone et la dose de peroxyde d'hydrogène, sur la formation des bromates et la dégradation des pesticides, représentée par l'atrazine.Les résultats de la littérature ont été confirmés lors de l'emploi unique de l'ozone. La formation des ions bromate est influencée par la présence du peroxyde d'hydrogène. Cet oxydant intervient de manière non négligeable sur la consommation des entités intermédiaires. Le couple HOBr/OBr- peut être oxydé par l'ozone moléculaire et le radical OH° mais peut également être réduit par l'ozone et par le peroxyde sous sa forme acide ou sa base conjuguée. En ce qui concerne la dégradation des pesticides, l'utilisation de peroxyde d'hydrogène couplé à l'ozone favorise l'oxydation de la molécule d'atrazine grâce à la présence plus importante de radicaux hydroxyles.Une pollution accidentelle en pesticides pourra être traitée par l'ajout ponctuel de peroxyde d'hydrogène avec une augmentation de pH, la formation des bromates sera, dans ce cas, faible. La désinfection sera alors assurée par l'étape de chloration.In drinking water treatment plants, ozonation is often used to disinfect, to remove micropollutants and to improve water taste and odour. Ozonation increases organic matter biodegradability before filtration through granular active carbon and reduces the concentration of haloform precursors that react in the final chlorination step. However, by-products that could be detrimental to human health could be formed. For example, bromates, which are classified as carcinogenic compounds by the I.A.R.C, are produced during the ozonation of bromide-containing water. The mechanism of bromate formation is complex, due to the participation of molecular ozone and radical (hydroxyl and carbonate) reactions. The optimisation of the process should allow for a good disinfection and a reduction in the levels of micropollutants, together with low by-product formation.Using a pilot-scale counter-current bubble column, we have measured the bromate concentration in relation to pesticide removal. Water spiked with bromide and atrazine was stored in a completely stirred-tank (2 m3) before being pumped to the top of the column. The inlet gaseous ozone was measured by an analyser using UV detection, the outlet gaseous ozone was monitored by the potassium iodide method, and the dissolved ozone concentration was determined by the indigo trisulfonate method. Bromides and bromates were quantified by ion chromatography with a conductimetric detector, with a sodium carbonate solution as the eluant. Samples for bromate analysis were pretreated by OnGuard-Ag and OnGuard-H cartridges in series before injection. Atrazine degradation was measured by high performance liquid chromatography with a diode array detector, with a CH3CN/H2O mixture as the eluant. The linearisation of atrazine removal allowed us to calculate the hydroxyl radical concentration in a series of a completely-stirred tank reactors and in a plug-flow reactor.We have studied the influence of several parameters on bromate formation, including pH, bromide concentration and hydrogen peroxide concentration. As bromate production is a function of bromide concentration, we have chosen to calculate the ratio between the real bromate concentration and the theoretical bromate concentration if all bromide were oxidised to bromate. The pH affects bromate formation: an increase in pH in the absence of hydrogen peroxide increases bromate production, but when this oxidant is applied bromate production decreases when the pH increases. If reaction progress is represented as a function of [O3]*TC, we note that the presence of hydrogen peroxide increases bromate formation because of the increase in hydroxyl radical concentration, which favours radical formation. Nevertheless, if we represent reaction progress as a function of [OH∘]*TC, hydrogen peroxide seems to be an initiator and a scavenger in the mechanism of bromate formation. If we calculate the rates of all the oxidation and reduction reactions for HOBr/OBr- species, the contribution to the reduction of HOBr/OBr- species by peroxide is very important in comparison to the oxidation reactions, which inhibits bromate production. Without the hydrogen peroxide, the contribution of oxidation is equal to that of the reduction reaction, and in this case bromate formation is effective. When, under the same initial operational conditions, we apply hydrogen peroxide with an increase in pH, we observe a decrease in bromate formation with a decrease of the dissolved ozone concentration, which hinders the desired disinfection. The main contribution to atrazine oxidation is from the free-radical reactions, which explains why removal is better when we apply hydrogen peroxide than when we use ozone alone. However, if we want to respect a low bromate level in drinking water, atrazine degradation should not be greater than 90% for the operational conditions on our pilot-scale.If an accidental high pesticide concentration is observed, an addition of hydrogen peroxide with a concurrent increase of pH, could treat the pollution. In this case, a subsequent chlorination step would then have to be used to assure the disinfection alone

    People making deontological judgments in the Trapdoor dilemma are perceived to be more prosocial in economic games than they actually are

    Get PDF
    Why do people make deontological decisions, although they often lead to overall unfavorable outcomes? One account is receiving considerable attention: deontological judgments may signal commitment to prosociality and thus may increase people’s chances of being selected as social partners–which carries obvious long-term benefits. Here we test this framework by experimentally exploring whether people making deontological judgments are expected to be more prosocial than those making consequentialist judgments and whether they are actually so. In line with previous studies, we identified deontological choices using the Trapdoor dilemma. Using economic games, we take two measures of general prosociality towards strangers: trustworthiness and altruism. Our results procure converging evidence for a perception gap according to which Trapdoor-deontologists are believed to be more trustworthy and more altruistic towards strangers than Trapdoor-consequentialists, but actually they are not so. These results show that deontological judgments are not universal, reliable signals of prosociality

    People making deontological judgments in the Trapdoor dilemma are perceived to be more prosocial in economic games than they actually are

    Get PDF
    Why do people make deontological decisions, although they often lead to overall unfavorable outcomes? One account is receiving considerable attention: deontological judgments may signal commitment to prosociality and thus may increase people’s chances of being selected as social partners–which carries obvious long-term benefits. Here we test this framework by experimentally exploring whether people making deontological judgments are expected to be more prosocial than those making consequentialist judgments and whether they are actually so. In line with previous studies, we identified deontological choices using the Trapdoor dilemma. Using economic games, we take two measures of general prosociality towards strangers: trustworthiness and altruism. Our results procure converging evidence for a perception gap according to which Trapdoor-deontologists are believed to be more trustworthy and more altruistic towards strangers than Trapdoor-consequentialists, but actually they are not so. These results show that deontological judgments are not universal, reliable signals of prosociality

    Evaluation and scale-up of single-use bioreactors for the production and harvesting of a hepatitis C vaccine candidate

    Get PDF
    The present work examines the suitability of single-use bioreactors for production of a Hepatitis C Virus-Like Particle (VLP) vaccine candidate using the baculovirus expression system with Sf9 cells. It can be shown that a Mobius® 3L bioreactor results in viable cell concentration, viability, growth kinetics, stability and VLP production that are comparable to standard glass bioreactors. A simple translation of hydrodynamic working parameters between the two systems is adequate to match performance. Furthermore, we report on the successful scale-up of this disposable alternative from a 3L to a 50L scale using minimal optimization. These results demonstrate the potential and ease of use of this technology for the production of complex biopharmaceutical products. Using the 50 liters harvested from the run, we evaluated depth filtration and compared the results to centrifugation. Multiple filter trains with different properties were tested and the results on recovery, turbidity and impurity reduction will be presented and discussed

    A new physiological model for studying the effect of chest compression and ventilation during cardiopulmonary resuscitation: The Thiel cadaver

    Get PDF
    BACKGROUND: Studying ventilation and intrathoracic pressure (ITP) induced by chest compressions (CC) during Cardio Pulmonary Resuscitation is challenging and important aspects such as airway closure have been mostly ignored. We hypothesized that Thiel Embalmed Cadavers could constitute an appropriate model. METHODS: We assessed respiratory mechanics and ITP during CC in 11 cadavers, and we compared it to measurements obtained in 9 out-of-hospital cardiac arrest patients and to predicted values from a bench model. An oesophageal catheter was inserted to assess chest wall compliance, and ITP variation (ΔITP). Airway pressure variation (ΔPaw) at airway opening and ΔITP generated by CC were measured at decremental positive end expiratory pressure (PEEP) to test its impact on flow and ΔPaw. The patient\u27s data were derived from flow and airway pressure captured via the ventilator during resuscitation. RESULTS: Resistance and Compliance of the respiratory system were comparable to those of the out-of-hospital cardiac arrest patients (C 42 ± 12 vs C 37.3 ± 10.9 mL/cmHO and Res 17.5 ± 7.5 vs Res 20.2 ± 5.3 cmHO/L/sec), and remained stable over time. During CC, ΔITP varied from 32 ± 12 cmHO to 69 ± 14 cmHO with manual and automatic CC respectively. Transmission of ΔITP at the airway opening was significantly affected by PEEP, suggesting dynamic small airway closure at low lung volumes. This phenomenon was similarly observed in patients. CONCLUSION: Respiratory mechanics and dynamic pressures during CC of cadavers behave as predicted by a theoretical model and similarly to patients. The Thiel model is a suitable to assess ITP variations induced by ventilation during CC

    Spiral spin-liquid and the emergence of a vortex-like state in MnSc2_2S4_4

    Full text link
    Spirals and helices are common motifs of long-range order in magnetic solids, and they may also be organized into more complex emergent structures such as magnetic skyrmions and vortices. A new type of spiral state, the spiral spin-liquid, in which spins fluctuate collectively as spirals, has recently been predicted to exist. Here, using neutron scattering techniques, we experimentally prove the existence of a spiral spin-liquid in MnSc2_2S4_4 by directly observing the 'spiral surface' - a continuous surface of spiral propagation vectors in reciprocal space. We elucidate the multi-step ordering behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase on application of a magnetic field. Our results prove the effectiveness of the J1J_1-J2J_2 Hamiltonian on the diamond lattice as a model for the spiral spin-liquid state in MnSc2_2S4_4, and also demonstrate a new way to realize a magnetic vortex lattice.Comment: 10 pages, 11 figure

    Long Term Stability of the LHC Superconducting Cryodipoles after Outdoor Storage

    Get PDF
    The main superconducting dipoles for the LHC are being stored outdoors for periods from a few weeks to several years after conditioning with dry nitrogen gas. Such a storage before installation in the 27 km circumference tunnel may affect not only the mechanical and cryogenic functionality of the cryodipoles but also their quench and field performance. A dedicated task force was established to study all aspects of long term behaviour of the stored cryodipoles, with particular emphasis on electrical and vacuum integrity, quench training behaviour, magnetic field quality, performance of the thermal insulation, mechanical stability of magnet shape and of the interface between cold mass and cryostat, degradation ofmaterials and welds. In particular, one specifically selected cryodipole stored outdoors for more than one year, was retested at cold. In addition, various tests have been carried out on the cryodipole assembly and on the most critical subcomponents to study aspects such as the hygrothermal behaviour of the supporting system and the possible oxidation of the Multi Layer Insulation reflective films. This paper summarizes the main investigations carried out and their results

    Photochemistry and Radical Chemistry under Low Intensity Visible Light Sources: Application to Photopolymerization Reactions:

    Get PDF
    The search for radical initiators able to work under soft conditions is a great challenge, driven by the fact that the use of safe and cheap light sources is very attractive. In the present paper, a review of some recently reported photoinitiating systems for polymerization under soft conditions is provided. Different approaches based on multi-component systems (e.g., photoredox catalysis) or light harvesting photoinitiators are described and discussed. The chemical mechanisms associated with the production of free radicals usable as initiating species or mediators of cations are reported
    corecore