323 research outputs found

    Synaptic Cleft Segmentation in Non-Isotropic Volume Electron Microscopy of the Complete Drosophila Brain

    Full text link
    Neural circuit reconstruction at single synapse resolution is increasingly recognized as crucially important to decipher the function of biological nervous systems. Volume electron microscopy in serial transmission or scanning mode has been demonstrated to provide the necessary resolution to segment or trace all neurites and to annotate all synaptic connections. Automatic annotation of synaptic connections has been done successfully in near isotropic electron microscopy of vertebrate model organisms. Results on non-isotropic data in insect models, however, are not yet on par with human annotation. We designed a new 3D-U-Net architecture to optimally represent isotropic fields of view in non-isotropic data. We used regression on a signed distance transform of manually annotated synaptic clefts of the CREMI challenge dataset to train this model and observed significant improvement over the state of the art. We developed open source software for optimized parallel prediction on very large volumetric datasets and applied our model to predict synaptic clefts in a 50 tera-voxels dataset of the complete Drosophila brain. Our model generalizes well to areas far away from where training data was available

    Polarized light-flavor antiquarks from Drell-Yan processes of h+\vec{N}\to\vec{l^{+-}} + l^{-+} + X

    Full text link
    We propose a formula to determine the first moment of difference between the polarized uˉ\bar u- and dˉ\bar d-quarks in the nucleon, {\it i.e.} ΔuˉΔdˉ\Delta\bar u-\Delta \bar d from the Drell-Yan processes in collisions of unpolarized hadrons with longitudinally polarized nucleons by measuring outgoing lepton helicities. As coefficients in the differential cross section depend on the uu- and dd-quark numbers in the unpolarized hadron beam, the difference ΔuˉΔdˉ\Delta\bar u-\Delta\bar d can be independently tested by changing the hadron beam. Moreover, a formula for estimating the KK-factor in Drell-Yan processes is also suggested.Comment: 10 pages, 1 figur

    Predictors of invertebrate biomass and rate of advancement of invertebrate phenology across eight sites in the North American Arctic

    Get PDF
    Average annual temperatures in the Arctic increased by 2–3 °C during the second half of the twentieth century. Because shorebirds initiate northward migration to Arctic nesting sites based on cues at distant wintering grounds, climate-driven changes in the phenology of Arctic invertebrates may lead to a mismatch between the nutritional demands of shorebirds and the invertebrate prey essential for egg formation and subsequent chick survival. To explore the environmental drivers afecting invertebrate availability, we modeled the biomass of invertebrates captured in modifed Malaise-pitfall traps over three summers at eight Arctic Shorebird Demographics Network sites as a function of accumulated degree-days and other weather variables. To assess climate-driven changes in invertebrate phenology, we used data from the nearest long-term weather stations to hindcast invertebrate availability over 63 summers, 1950–2012. Our results confrmed the importance of both accumulated and daily temperatures as predictors of invertebrate availability while also showing that wind speed negatively afected invertebrate availability at the majority of sites. Additionally, our results suggest that seasonal prey avail ability for Arctic shorebirds is occurring earlier and that the potential for trophic mismatch is greatest at the northernmost sites, where hindcast invertebrate phenology advanced by approximately 1–2.5 days per decade. Phenological mismatch could have long-term population-level efects on shorebird species that are unable to adjust their breeding schedules to the increasingly earlier invertebrate phenologies.publishedVersio

    TrakEM2 Software for Neural Circuit Reconstruction

    Get PDF
    A key challenge in neuroscience is the expeditious reconstruction of neuronal circuits. For model systems such as Drosophila and C. elegans, the limiting step is no longer the acquisition of imagery but the extraction of the circuit from images. For this purpose, we designed a software application, TrakEM2, that addresses the systematic reconstruction of neuronal circuits from large electron microscopical and optical image volumes. We address the challenges of image volume composition from individual, deformed images; of the reconstruction of neuronal arbors and annotation of synapses with fast manual and semi-automatic methods; and the management of large collections of both images and annotations. The output is a neural circuit of 3d arbors and synapses, encoded in NeuroML and other formats, ready for analysis

    The behaviour of political parties and MPs in the parliaments of the Weimar Republic

    Get PDF
    Copyright @ 2012 The Authors. This is the author's accepted manuscript. The final published article is available from the link below.Analysing the roll-call votes of the MPs of the Weimar Republic we find: (1) that party competition in the Weimar parliaments can be structured along two dimensions: an economic left–right and a pro-/anti-democratic. Remarkably, this is stable throughout the entire lifespan of the Republic and not just in the later years and despite the varying content of votes across the lifespan of the Republic, and (2) that nearly all parties were troubled by intra-party divisions, though, in particular, the national socialists and communists became homogeneous in the final years of the Republic.Zukunftskolleg, University of Konstan

    Drell-Yan forward-backward and spin asymmetries for arbitrary vector boson production at next-to-leading order

    Get PDF
    Longitudinally polarized, unpolarized and forward-backward mass differential cross sections for Drell-Yan lepton-pair production by arbitrary vector bosons are calculated in next-to-leading order (NLO) QCD. Analytical results are presented in a form valid for all consistent nn-dimensional regularization schemes, with the mass factorization scheme kept general. NLO predictions for all Drell-Yan type processes (W±W^\pm, ZZ and γ\gamma^*) at BNL's relativistic heavy ion collider (RHIC) are made using polarized parton distributions which fit the recent deep-inelastic scattering data. These are examined as tools in the determination of the polarized parton distributions and the unpolarized uˉ/dˉ\bar{u}/\bar{d} ratio. NLO predictions for the forward-backward lepton asymmetry at Fermilab are made and the precision determination of sin2θW\sin^2 \theta_W from future runs is studied. In all the above, the QCD corrections are found to be significant. An introductory discussion is given of various theoretical issues, such as allowable factorization and regularization schemes, and scale dependences.Comment: 34 pages, figures included, revtex. Some discussions and references added/modified. In more compact form. To appear in Phys. Rev.

    Monitoring the Dusty S-Cluster Object (DSO/G2) on its Orbit towards the Galactic Center Black Hole

    Full text link
    We analyse and report in detail new near-infrared (1.45 - 2.45 microns) observations of the Dusty S-cluster Object (DSO/G2) during its approach to the black hole at the center of the Galaxy that were carried out with ESO VLT/SINFONI between February and September 2014. Before May 2014 we detect spatially compact Br-gamma and Pa-alpha line emission from the DSO at about 40mas east of SgrA*. The velocity of the source, measured from the red-shifted emission, is 2700+-60 km/s. No blue-shifted emission above the noise level is detected at the position of SgrA* or upstream the presumed orbit. After May we find spatially compact Br-gamma blue-shifted line emission from the DSO at about 30mas west of SgrA* at a velocity of -3320+-60 km/s and no indication for significant red-shifted emission. We do not detect any significant extension of velocity gradient across the source. We find a Br-gamma-line full width at half maximum of 50+-10 Angstroem before and 15+-10 Angstroem after the peribothron transit, i.e. no significant line broadening with respect to last year is observed. Br-gamma line maps show that the bulk of the line emission originates from a region of less than 20mas diameter. This is consistent with a very compact source on an elliptical orbit with a peribothron time passage in 2014.39+-0.14. For the moment, the flaring activity of the black hole in the near-infrared regime has not shown any statistically significant increment. Increased accretion activity of SgrA* may still be upcoming. We discuss details of a source model according to which the DSO is rather a young accreting star than a coreless gas and dust cloud.Comment: 32 pages - 3 tables - 17 figure - accepted by Ap
    corecore