86 research outputs found

    Des sols et des hommes : un lien menacé

    Get PDF

    South America: a reservoir of continental carbon - first estimate of changes since 18,000 yr BP

    Get PDF
    By using geographic and palaeogeographic sketches established for the present situation (before recent deforestation) and for the glacial maximum (about 15,000-18,000 BP) we can estimate the possible total biomass (phytomass) of the South American continent. According to the biomass density used in this first estimate for ten major ecosystems, the results show a possible increase from 140 Gt of carbon (glacial maximum) to 214 Gt C (preindustrial) for the phytomass, and 120 to 180 Gt C for the soils. These preliminary results are possibly only a 60 or 70 percent approximate estimate and could be modified with computation using other palaeogeographic models or another biomass density. It is therefore to underline the urgent need of more field biomass measurements, ecosystems mappings, and palaeostudies to evaluate the part of South America as a future possible sink for the atmospheric carbon dioxide. The Amazonian forest makes of South America an important continental reservoir of carbon for the planet Earth. This continent represents consequently a key zone for the research and knowledge of changes in the biogeochemical cycle of carbon. In order to evaluate more precisely the role it plays we estimated the approximate quantities of carbon in the total phytomass and the carbon in soils for each of the ecosystems represented in Figure 1, both for Present and Last Glacial Maximum landscapes

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Sombric horizon: five decades without evolution

    Get PDF
    The sombric horizon is a diagnostic subsurface horizon defined in the soil classification system of the United States (Soil Taxonomy) and FAO (WRB), used to classify the soil at different categorical levels. The sombric horizon has a soil color darker than the overlying surface(s) horizon(s), and must show illuvial humus accumulation features, though they are not associated with aluminum (Al), as in the spodic horizon, nor associated with sodium (Na), as in the natric horizon. There are also criteria to distinguish it from buried A horizons. However, since the first references and proposed concept of the sombric horizon in African soils made by Sys and co-workers in the 1960s, and adopted by the Soil Taxonomy edition of 1975, few modifications have been made to its definition. Moreover, the pedogenic process involved in illuvial humus accumulation in these horizons remains inadequately clarified, making the distinction between the sombric and spodic or buried A horizon difficult and unclear. This review reports the historical evolution of the sombric horizon concept, its definition and inconsistencies under different soil classification systems, and the current hypothesis, together with its fragilities, proposed to explain the soil illuvial humus accumulation. Although it is recognized that further research is necessary, alternative criteria are proposed for the definition of the sombric horizon in the Brazilian System of Soil Classification

    Initial sizing of a wave energy converter

    No full text
    • …
    corecore