1,375 research outputs found

    A New Modified Collection Selection Algorithm using Optimal Term Weight for Web based Applications

    Get PDF
    As the number of electronic data collections available on the internet increases so does the difficulty of finding the right collection for a given query Often the first time user will be overwhelmed by the array of options available and will waste time hunting through pages of collection names followed by time reading results pages after doing an adhoc search Collection selection using optimal weight methods try to solve this problem by suggesting the best subset of collections to search based on a query This is of importance to fields containing large number of electronic collections which undergo frequent change and collections that cannot be fully indexed using traditional methods such as spiders This paper presents a solution to these problems of selecting the best collections and reducing the number of collections needing to be searche

    Optimum structural design with static aeroelastic constraints

    Get PDF
    The static aeroelastic performance characteristics, divergence velocity, control effectiveness and lift effectiveness are considered in obtaining an optimum weight structure. A typical swept wing structure is used with upper and lower skins, spar and rib thicknesses, and spar cap and vertical post cross-sectional areas as the design parameters. Incompressible aerodynamic strip theory is used to derive the constraint formulations, and aerodynamic load matrices. A Sequential Unconstrained Minimization Technique (SUMT) algorithm is used to optimize the wing structure to meet the desired performance constraints

    Quantitative Analysis of AGV System in FMS Cell Layout

    Get PDF
    Material handling is a specialised activity for a modern manufacturing concern. Automated guided vehicles (AGVs) are invariably used for material handling in flexible manufacturing Systems (FMSs) due to their flexibility. The quantitative analysis of an AGV system is useful for determining the material flow rates, operation times, length of delivery, length of empty move of AGV and the number of AGVs required for a typical FMS cell layout. The efficiency of the material handling system, such as AGV can be improved by reducing the length of empty move. The length of empty move of AGV depends upon despatching and scheduling methods. If these methods of AGVs are not properly planned, the length of empty move of AGV is greater than the length of delivery .This results in increase in material handling time which in turn increases the number of AGVs required in FMS cell. This paper presents a method for optimising the length of empty travel of AGV in a typical FMS cell layout

    Normal Coordinate Treatment of some Pyridines

    Get PDF

    Mixed Chelate Complexes of Manganese(III)

    Get PDF
    751-75

    Reaction of Bis-β-diketonates of Zn(II) with Thiourea

    Get PDF
    535-53

    Dispersion of a solute in a Herschel–Bulkley fluid flowing in a conduit

    Get PDF
    The dispersion of a solute in a Herschel-Bulkley fluid is studied by using the generalized dispersion model in both pipe and channel. With this method the entire dispersion process is described as a simple diffusion process with the effective diffusion coefficient as a function of time. The results for Newtonian fluid, power law fluid and Bingham fluid are obtained as special cases by giving appropriate values to the power law index and yield stress. The effects of power law index, yield stress on the dispersion coefficient and mean concentration have been discussed computationally and graphically. The effect of power law index and yield stress is found to reduce the dispersion coefficient. It is observed that the critical time for dispersion coefficient to reach the steady state is varying with the yield stress and power law index. It is noticed that time to assume the critical value in Newtonian case is 0.5 and in the channel case the corresponding value of time is 0.55 which are in agreement with the existed results. It is also observed that in the non- Newtonian fluids this time is less than that of Newtonian fluid case and in Bingham fluid the critical value of time in pipe flow analysis (channel flow analysis) is attained at 0.45 (0.52) while in power law fluid it is at 0.43(0.48) and in the case of Herschel-Bulkley fluid it is 0.41 (0.45)

    New flavor physics in bb decays

    Get PDF
    A new U(1)U(1) gauge boson coupling predominantly to the third family has been considered in connection with recent LEP data. We consider another likely consequence of such a gauge boson, a greatly enhanced bb quark decay mode, b \to s \nnbar.Comment: 6 pages, Latex documen

    An Improved Chaotic Grey Wolf Optimization Algorithm (CGWO)

    Get PDF
    Grey Wolf Optimization (GWO) is a new type of swarm-based technique for dealing with realistic engineering design constraints and unconstrained problems in the field of metaheuristic research. Swarm-based techniques are a type of population-based algorithm inspired by nature that can produce low-cost, quick, and dependable solutions to a wider variety of complications. It is the best choice when it can achieve faster convergence by avoiding local optima trapping. This work incorporates chaos theory with the standard GWO to improve the algorithm's performance due to the ergodicity of chaos. The proposed methodology is referred to as Chaos-GWO (CGWO). The CGWO improves the search space's exploration and exploitation abilities while avoiding local optima trapping. Using different benchmark functions, five distinct chaotic map functions are examined, and the best chaotic map is considered to have great mobility and ergodicity characteristics. The results demonstrated that the best performance comes from using the suitable chaotic map function, and that CGWO can clearly outperform standard GWO
    corecore