Colour refinement is a basic algorithmic routine for graph isomorphism
testing, appearing as a subroutine in almost all practical isomorphism solvers.
It partitions the vertices of a graph into "colour classes" in such a way that
all vertices in the same colour class have the same number of neighbours in
every colour class. Tinhofer (Disc. App. Math., 1991), Ramana, Scheinerman, and
Ullman (Disc. Math., 1994) and Godsil (Lin. Alg. and its App., 1997)
established a tight correspondence between colour refinement and fractional
isomorphisms of graphs, which are solutions to the LP relaxation of a natural
ILP formulation of graph isomorphism.
We introduce a version of colour refinement for matrices and extend existing
quasilinear algorithms for computing the colour classes. Then we generalise the
correspondence between colour refinement and fractional automorphisms and
develop a theory of fractional automorphisms and isomorphisms of matrices.
We apply our results to reduce the dimensions of systems of linear equations
and linear programs. Specifically, we show that any given LP L can efficiently
be transformed into a (potentially) smaller LP L' whose number of variables and
constraints is the number of colour classes of the colour refinement algorithm,
applied to a matrix associated with the LP. The transformation is such that we
can easily (by a linear mapping) map both feasible and optimal solutions back
and forth between the two LPs. We demonstrate empirically that colour
refinement can indeed greatly reduce the cost of solving linear programs