581 research outputs found
Compendium of TCDD-mediated transcriptomic response datasets in mammalian model systems
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent congener of the dioxin class of environmental contaminants. Exposure to TCDD causes a wide range of toxic outcomes, ranging from chloracne to acute lethality. The severity of toxicity is highly dependent on the aryl hydrocarbon receptor (AHR). Binding of TCDD to the AHR leads to changes in transcription of numerous genes. Studies evaluating the transcriptional changes brought on by TCDD may provide valuable insight into the role of the AHR in human health and disease. We therefore compiled a collection of transcriptomic datasets that can be used to aid the scientific community in better understanding the transcriptional effects of ligand-activated AHR.Peer reviewe
Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-p-dioxin
In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake. As the hypothalamus is the central nervous systems' regulatory center for food-intake and energy balance. Therefore, mRNA abundances in hypothalamic tissue from two rat strains with widely differing sensitivities to TCDD-induced wasting syndrome: TCDD-sensitive Long-Evans rats and TCDD-resistant Han/Wistar rats, 23 h after exposure to TCDD (100 mu g/kg) or corn oil vehicle. TCDD exposure caused minimal transcriptional dysregulation in the hypothalamus, with only 6 genes significantly altered in Long-Evans rats and 15 genes in Han/Wistar rats. Two of the most dysregulated genes were Cyp1a1 and Nqo1, which are induced by TCDD across a wide range of tissues and are considered sensitive markers of TCDD exposure. The minimal response of the hypothalamic transcriptome to a lethal dose of TCDD at an early time-point suggests that the hypothalamus is not the predominant site of initial events leading to hypophagia and associated wasting. TCDD may affect feeding behaviour via events upstream or downstream of the hypothalamus, and further work is required to evaluate this at the level of individual hypothalamic nuclei and subregions. (C) 2014 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe
Danish, Estonian and Finnish NZEB requirements comparison with European Commission recommendations for office buildings in Nordic and Oceanic climates
Direct comparison of building energy performance levels between countries is usually not possible due to differences in climatic conditions, calculation methods, primary energy (PE) factors and input data. The aim of this paper is to analyse the differences in nearly zero energy office buildings requirements and energy calculation methodology in Denmark, Finland, and Estonia. The study is based on a newly built Estonian office building, designed to meet national NZEB requirements. To account for the climatic differences between the countries a heating-degree-days-based correction factor was applied for building envelope thermal transmittance. NZEB requirements for each country are compared with European Commission (EC) recommended values (EU 2016/1318) using normalization and benchmarking through detailed computer simulations. National NZEB primary energy threshold was needed to be reduced by 7% in Denmark and by 23% in Estonia to meet EC recommendations. At the same time, the flagship reference building, that was better than Estonian NZEB, met both Nordic and Oceanic EC recommendations. Finnish NZEB requirement was not exceeded with any building configuration applied in this study, indicating that Finnish NZEB is considerably less strict compared to Danish and Estonian ones
2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced RNA abundance changes identify Ackr3, Col18a1, Cyb5a and Glud1 as candidate mediators of toxicity
PMID: 27136898Peer reviewe
mRNA levels in control rat liver display strain-specific, hereditary, and AHR-dependent components
Peer reviewe
Differential Expression Profiling of the Hepatic Proteome in a Rat Model of Dioxin Resistance CORRELATION WITH GENOMIC AND TRANSCRIPTOMIC ANALYSES
One characteristic feature of acute 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity is dramatic interspecies and interstrain variability in sensitivity. This complicates dioxin risk assessment for humans. However, this variability also provides a means of characterizing mechanisms of dioxin toxicity. Long-Evans (Turku/AB) rats are orders of magnitude more susceptible to TCDD lethality than Han/Wistar (Kuopio) rats, and this difference constitutes a very useful model for identifying mechanisms of dioxin toxicity. We adopted a proteomic approach to identify the differential effects of TCDD exposure on liver protein expression in Han/Wistar rats as compared with Long-Evans rats. This allows determination of which, if any, protein markers are indicative of differences in dioxin susceptibility and/or responsible for conferring resistance. Differential protein expression in total liver protein was assessed using two-dimensional gel electrophoresis, computerized gel image analysis, in-gel digestion, and mass spectrometry. We observed significant changes in the abundance of several proteins, which fall into three general classes: (i) TCDD-independent and exclusively strain-specific (e.g. isoforms of the protein-disulfide isomerase A3, regucalcin, and agmatine ureohydrolase); (ii) strain-independent and only dependent on TCDD exposure (e.g. aldehyde dehydrogenase 3A1 and rat selenium-binding protein 2); (iii) dependent on both TCDD exposure and strain (e.g. oxidative stress-related proteins, apoptosis-inducing factor, and MAWD-binding protein). By integrating transcriptomic (microarray) data and genomic data (computational search of regulatory elements), we found that protein expression levels were mainly controlled at the level of transcription. These results reveal, for the first time, a subset of hepatic proteins that are differentially regulated in response to TCDD in a strain-specific manner. Some of these differential responses may play a role in establishing the major differences in TCDD response between these two strains of rats. As such, our work is expected to lead to new insights into the mechanism of TCDD toxicity and resistance
Aryl hydrocarbon receptor (AHR)-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities
Peer reviewe
The aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries.
- …
