96 research outputs found

    Flow cytometric assessment of leukocyte kinetics for the monitoring of tissue damage

    Get PDF
    Leukocyte populations quickly respond to tissue damage, but most leukocyte kinetic studies are not based on multiparameter flow cytometry. We systematically investigated several blood leukocyte populations after controlled tissue damage. 48 patients were assigned to either an anterior or posterolateral total hip arthroplasty. Peripheral blood was collected pre-operatively and at 2 h, 24 h, 48 h, 2 and 6 weeks postoperatively and assessed by flow cytometry for absolute counts of multiple leukocyte populations using standardized EuroFlow protocols. Absolute counts of leukocyte subsets differed significantly between consecutive time points. Neutrophils increased instantly after surgery, while most leukocyte subsets initially decreased, followed by increasing cell counts until 48 h. At two weeks all leukocyte counts were restored to pre-operative counts. Immune cell kinetics upon acute tissue damage exhibit reproducible patterns, which differ between the leukocyte subsets and with “opposite kinetics” among monocyte subsets. Flow cytometric leukocyte monitoring can be used to minimally invasively monitor tissue damage.This was supported by Stichting Anna Fonds/NOREF (Dutch Orthopedic Research and Education Fund) and the Erasmus MC Medical research grant (grant no. DRP337224)

    The Influence of Overweight/Obesity on Patient-Perceived Physical Functioning and Health-Related Quality of Life After Primary Total Hip Arthroplasty

    Get PDF
    # The Author(s) 2011. This article is published with open access at Springerlink.com Background Overweight/obesity in patients after total hip arthroplasty (THA) is a growing problem and is associated with postoperative complications and a negative effect on functional outcome. The objective of this study is to determine to what extent overweight/obesity is associated with physical functioning and health-related quality of life 1 year after primary THA

    Impairments in Attention in Occasionally Snoring Children: An Event-Related Potential Study

    Get PDF
    Objective—To determine whether minimal snoring is benign in children. Procedure—22 rarely snoring children (mean age=6.9 years, 11 females) and age- and sexmatched controls participated in an auditory oddball task wearing 128-electrode nets. Parents completed Conner’s Parent Rating Scales-Revised Long (CPRS-R:L). Results—Snorers scored significantly higher on 4 CPRS-R:L subscales. Stepwise regression indicated that two ERP variables from a region of the ERP that peaked at 844 ms post-stimulus onset predicted CPRS-R:L ADHD Index scores. Conclusions—Occasional snorers according to parental report do exhibit ADHD-like behaviors. Basic sensory processing is longer than in controls, suggesting that delayed frontal activation requires more effort in snorers

    PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder caused by mutations in at least two different loci. Prior to performing mutation screening, if DNA samples of sufficient number of family members are available, it is worthwhile to assign the gene involved in disease progression by the genetic linkage analysis. METHODS: We collected samples from 36 Slovene ADPKD families and performed linkage analysis in 16 of them. Linkage was assessed by the use of microsatellite polymorphic markers, four in the case of PKD1 (KG8, AC2.5, CW3 and CW2) and five for PKD2 (D4S1534, D4S2929, D4S1542, D4S1563 and D4S423). Partial PKD1 mutation screening was undertaken by analysing exons 23 and 31–46 and PKD2 . RESULTS: Lod scores indicated linkage to PKD1 in six families and to PKD2 in two families. One family was linked to none and in seven families linkage to both genes was possible. Partial PKD1 mutation screening was performed in 33 patients (including 20 patients from the families where linkage analysis could not be performed). We analysed PKD2 in 2 patients where lod scores indicated linkage to PKD2 and in 7 families where linkage to both genes was possible. We detected six mutations and eight polymorphisms in PKD1 and one mutation and three polymorphisms in PKD2. CONCLUSION: In our study group of ADPKD patients we detected seven mutations: three frameshift, one missense, two nonsense and one putative splicing mutation. Three have been described previously and 4 are novel. Three newly described framesfift mutations in PKD1 seem to be associated with more severe clinical course of ADPKD. Previously described nonsense mutation in PKD2 seems to be associated with cysts in liver and milder clinical course

    Using Ribosomal Protein Genes as Reference: A Tale of Caution

    Get PDF
    Background: Housekeeping genes are needed in every tissue as their expression is required for survival, integrity or duplication of every cell. Housekeeping genes commonly have been used as reference genes to normalize gene expression data, the underlying assumption being that they are expressed in every cell type at approximately the same level. Often, the terms "reference genes'' and "housekeeping genes'' are used interchangeably. In this paper, we would like to distinguish between these terms. Consensus is growing that housekeeping genes which have traditionally been used to normalize gene expression data are not good reference genes. Recently, ribosomal protein genes have been suggested as reference genes based on a meta-analysis of publicly available microarray data. Methodology/Principal Findings: We have applied several statistical tools on a dataset of 70 microarrays representing 22 different tissues, to assess and visualize expression stability of ribosomal protein genes. We confirmed the housekeeping status of these genes, but further estimated expression stability across tissues in order to assess their potential as reference genes. One- and two-way ANOVA revealed that all ribosomal protein genes have significant expression variation across tissues and exhibit tissue-dependent expression behavior as a group. Via multidimensional unfolding analysis, we visualized this tissue-dependency. In addition, we explored mechanisms that may cause tissue dependent effects of individual ribosomal protein genes. Conclusions/Significance: Here we provide statistical and biological evidence that ribosomal protein genes exhibit important tissue-dependent variation in mRNA expression. Though these genes are most stably expressed of all investigated genes in a meta-analysis they cannot be considered true reference genes

    Naked1 Antagonizes Wnt Signaling by Preventing Nuclear Accumulation of β-Catenin

    Get PDF
    Cyto-nuclear shuttling of β-catenin is at the epicenter of the canonical Wnt pathway and mutations in genes that result in excessive nuclear accumulation of β-catenin are the driving force behind the initiation of many cancers. Recently, Naked Cuticle homolog 1 (Nkd1) has been identified as a Wnt-induced intracellular negative regulator of canonical Wnt signaling. The current model suggests that Nkd1 acts between Disheveled (Dvl) and β-catenin. Here, we employ the zebrafish embryo to characterize the cellular and biochemical role of Nkd1 in vivo. We demonstrate that Nkd1 binds to β-catenin and prevents its nuclear accumulation. We also show that this interaction is conserved in mammalian cultured cells. Further, we demonstrate that Nkd1 function is dependent on its interaction with the cell membrane. Given the conserved nature of Nkd1, our results shed light on the negative feedback regulation of Wnt signaling through the Nkd1-mediated negative control of nuclear accumulation of β-catenin

    Pαx6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1

    Get PDF
    During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity

    Long homopurine•homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region

    Get PDF
    Homo(purine•pyrimidine) sequences (R•Y tracts) with mirror repeat symmetries form stable triplexes that block replication and transcription and promote genetic rearrangements. A systematic search was conducted to map the location of the longest R•Y tracts in the human genome in order to assess their potential function(s). The 814 R•Y tracts with ≥250 uninterrupted base pairs were preferentially clustered in the pseudoautosomal region of the sex chromosomes and located in the introns of 228 annotated genes whose protein products were associated with functions at the cell membrane. These genes were highly expressed in the brain and particularly in genes associated with susceptibility to mental disorders, such as schizophrenia. The set of 1957 genes harboring the 2886 R•Y tracts with ≥100 uninterrupted base pairs was additionally enriched in proteins associated with phosphorylation, signal transduction, development and morphogenesis. Comparisons of the ≥250 bp R•Y tracts in the mouse and chimpanzee genomes indicated that these sequences have mutated faster than the surrounding regions and are longer in humans than in chimpanzees. These results support a role for long R•Y tracts in promoting recombination and genome diversity during evolution through destabilization of chromosomal DNA, thereby inducing repair and mutation

    Polycystic kidney diseases: From molecular discoveries to targeted therapeutic strategies

    Get PDF
    Polycystic kidney diseases (PKDs) represent a large group of progressive renal disorders characterized by the development of renal cysts leading to end-stage renal disease. Enormous strides have been made in understanding the pathogenesis of PKDs and the development of new therapies. Studies of autosomal dominant and recessive polycystic kidney diseases converge on molecular mechanisms of cystogenesis, including ciliary abnormalities and intracellular calcium dysregulation, ultimately leading to increased proliferation, apoptosis and dedifferentiation. Here we review the pathobiology of PKD, highlighting recent progress in elucidating common molecular pathways of cystogenesis. We discuss available models and challenges for therapeutic discovery as well as summarize the results from preclinical experimental treatments targeting key disease-specific pathways
    corecore