23,820 research outputs found

    The 3D version of the finite element program FESTER

    Get PDF
    In this report, a detailed description of the 3-D version finite element pro-gram FESTER is given. This includes: 1. A brief introduction to the package FESTER; 2. Preparing an input data file for the 3D version of FESTER; 3. Principal stress and stress invariant analyses; 4. 2D joint element (surface contact) characterisation and its mathematical formulation; 5. Formulations of the 3D stress-strain analyses for both isotropic and anisotropic materials, plane of weakness and cracking criteria; 6. 3D brick elements, infinity elements and their corresponding shape and mapping functions; 7. Large-displacement formulations; 8. Modifications to the subroutines INVAR, JNTB, TMAT, MOD2 etc; 9. Numerical examples; and 10. Conclusions

    R-from-T as a common mechanism of arrhythmia initiation in long QT syndromes

    Get PDF
    Background: Long QT syndromes (LQTS) arise from many genetic and nongenetic causes with certain characteristic ECG features preceding polymorphic ventricular tachyarrhythmias (PVTs). However, how the many molecular causes result in these characteristic ECG patterns and how these patterns are mechanistically linked to the spontaneous initiation of PVT remain poorly understood. Methods: Anatomic human ventricle and simplified tissue models were used to investigate the mechanisms of spontaneous initiation of PVT in LQTS. Results: Spontaneous initiation of PVT was elicited by gradually ramping up I-Ca,I-L to simulate the initial phase of a sympathetic surge or by changing the heart rate, reproducing the different genotype-dependent clinical ECG features. In LQTS type 2 (LQT2) and LQTS type 3 (LQT3), T-wave alternans was observed followed by premature ventricular complexes (PVCs). Compensatory pauses occurred resulting in short-long-short sequences. As I-Ca,I-L increased further, PVT episodes occurred, always preceded by a short-long-short sequence. However, in LQTS type 1 (LQT1), once a PVC occurred, it always immediately led to an episode of PVT. Arrhythmias in LQT2 and LQT3 were bradycardia dependent, whereas those in LQT1 were not. In all 3 genotypes, PVCs always originated spontaneously from the steep repolarization gradient region and manifested on ECG as R-on-T. We call this mechanism R-from-T, to distinguish it from the classic explanation of R-on-T arrhythmogenesis in which an exogenous PVC coincidentally encounters a repolarizing region. In R-from-T, the PVC and the T wave are causally related, where steep repolarization gradients combined with enhanced I-Ca,I-L lead to PVCs emerging from the T wave. Since enhanced I-Ca,I-L was required for R-from-T to occur, suppressing window I-Ca,I-L effectively prevented arrhythmias in all 3 genotypes. Conclusions: Despite the complex molecular causes, these results suggest that R-from-T is likely a common mechanism for PVT initiation in LQTS. Targeting I-Ca,I-L properties, such as suppressing window I-Ca,I-L or preventing excessive I-Ca,I-L increase, could be an effective unified therapy for arrhythmia prevention in LQTS

    Impact of energetic particle orbits on long range frequency chirping of BGK modes

    Get PDF
    Long range frequency chirping of Bernstein-Greene-Kruskal modes, whose existence is determined by the fast particles, is investigated in cases where these particles do not move freely and their motion is bounded to restricted orbits. An equilibrium oscillating potential, which creates different orbit topologies of energetic particles, is included into the bump-on-tail instability problem of a plasma wave. With respect to fast particles dynamics, the extended model captures the range of particles motion (trapped/passing) with energy and thus represents a more realistic 1D picture of the long range sweeping events observed for weakly damped modes, e.g. global Alfven eigenmodes, in tokamaks. The Poisson equation is solved numerically along with bounce averaging the Vlasov equation in the adiabatic regime. We demonstrate that the shape and the saturation amplitude of the nonlinear mode structure depends not only on the amount of deviation from the initial eigenfrequency but also on the initial energy of the resonant electrons in the equilibrium potential. Similarly, the results reveal that the resonant electrons following different equilibrium orbits in the electrostatic potential lead to different rates of frequency evolution. As compared to the previous model [Breizman B.N. 2010 Nucl. Fusion 50 084014], it is shown that the frequency sweeps with lower rates. The additional physics included in the model enables a more complete 1D description of the range of phenomena observed in experiments.Comment: Submitted to Nuclear Fusion 25/01/201

    Timing Features of the Accretion--driven Millisecond X-Ray Pulsar XTE J1807--294 in 2003 March Outburst

    Full text link
    In order to probe the activity of the inner disk flow and its effect on the neutron star surface emissions, we carried out the timing analysis of the Rossi X-Ray Timing Explorer (RXTE) observations of the millisecond X-ray pulsar XTE J1807--294, focusing on its correlated behaviors in X-ray intensities, hardness ratios, pulse profiles and power density spectra. The source was observed to have a serial of broad "puny" flares on a timescale of hours to days on the top of a decaying outburst in March 2003. In the flares, the spectra are softened and the pulse profiles become more sinusoidal. The frequency of kilohertz quasi-periodic oscillation (kHz QPO) is found to be positively related to the X-ray count rate in the flares. These features observed in the flares could be due to the accreting flow inhomogeneities. It is noticed that the fractional pulse amplitude increases with the flare intensities in a range of 2\sim 2%-14%, comparable to those observed in the thermonuclear bursts of the millisecond X-ray pulsar XTE J1814--338, whereas it remains at about 6.5% in the normal state. Such a significant variation of the pulse profile in the "puny" flares may reflect the changes of physical parameters in the inner disk accretion region. Furthermore, we noticed an overall positive correlation between the kHz QPO frequency and the fractional pulse amplitude, which could be the first evidence representing that the neutron-star surface emission properties are very sensitive to the disk flow inhomogeneities. This effect should be cautiously considered in the burst oscillation studies.Comment: Accepted by ApJ, 23 pages, 7 figures, 3 table

    Tunable Spin-Orbit Coupling via Strong Driving in Ultracold Atom Systems

    Full text link
    Spin-orbit coupling (SOC) is an essential ingredient in topological materials, conventional and quantum-gas based alike.~Engineered spin-orbit coupling in ultracold atom systems --unique in their experimental control and measurement opportunities-- provides a major opportunity to investigate and understand topological phenomena.~Here we experimentally demonstrate and theoretically analyze a technique for controlling SOC in a two component Bose-Einstein condensate using amplitude-modulated Raman coupling.Comment: 5 pages, 4 figue

    A novel RF coil: tunable loop microstrip (TLM) coil

    Get PDF
    A new tunable loop microstrip (TLM) RF coil for MRI is presented. It is a novel approach to use tuning capacitor on microstrip ring resonator. The resonant frequency and Q are analyzed based on microstrip theory. The experiment results show its advantages of higher Q and less frequency shift with loading effect than conventional microstrip coils terminated with open or short circuit. Because of its tunable characteristics, this new TLM coil can be easily applied to high and particularly to ultra-high filed MRI systems.published_or_final_versio

    Tunable loop microstrip (TLM) coil array with decoupling capacitors

    Get PDF
    The tunable loop microstrip (TLM) coil array with capacitive decoupling circuits can achieve more than -20dB element isolation. The decoupling circuit is quite simple and easy to be adjusted, so it is suitable for array with large number of elements. It is not only used for receive-only mode, but an excellent choice for transceiver as well for parallel MRI.published_or_final_versio

    A Laser-Guided Spinal Cord Displacement Injury in Adult Mice

    Get PDF
    Mouse models are unique for studying molecular mechanisms of neurotrauma because of the availability of various genetic modified mouse lines. For spinal cord injury (SCI) research, producing an accurate injury is essential, but it is challenging because of the small size of the mouse cord and the inconsistency of injury production. The Louisville Injury System Apparatus (LISA) impactor has been shown to produce precise contusive SCI in adult rats. Here, we examined whether the LISA impactor could be used to create accurate and graded contusive SCIs in mice. Adult C57BL/6 mice received a T10 laminectomy followed by 0.2, 0.5, and 0.8 mm displacement injuries, guided by a laser, from the dorsal surface of the spinal cord using the LISA impactor. Basso Mouse Scale (BMS), grid-walking, TreadScan, and Hargreaves analyses were performed for up to 6 weeks post-injury. All mice were euthanized at the 7th week, and the spinal cords were collected for histological analysis. Our results showed that the LISA impactor produced accurate and consistent contusive SCIs corresponding to mild, moderate, and severe injuries to the cord. The degree of injury severities could be readily determined by the BMS locomotor, grid-walking, and TreadScan gait assessments. The cutaneous hyperalgesia threshold was also significantly increased as the injury severity increased. The terminal lesion area and the spared white matter of the injury epicenter were strongly correlated with the injury severities. We conclude that the LISA device, guided by a laser, can produce reliable graded contusive SCIs in mice, resulting in severity-dependent behavioral and histopathological deficits

    Optimal Utilization of Acquired k-space points for GRAPPA reconstruction

    Get PDF
    The generalized approach to parallel MRI has indicated that the utilization of acquired k-space points for GRAPPA reconstruction can be more flexible, including the points in frequency encoding direction. To investigate the optimal utilization of acquired k-space points in GRAPPA, the neighbor GRAPPA which incorporates several neighbor points to estimate each missing point is compared with the conventional GRAPPA by simulations and experiments. It is discovered that the optimal reconstruction scheme should depend on the geometry of the receive coil array and the orientation of FOV.published_or_final_versio
    corecore