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Impact of energetic particle orbits on long range

frequency chirping of BGK modes

H. Hezaveh, Z. S. Qu, B. Layden and M. J. Hole

Research School of Physics and Engineering, The Australian National University, Canberra ACT
2601, Australia

E-mail: hooman.hezaveh@anu.edu.au

Abstract.

Long range frequency chirping of Bernstein-Greene-Kruskal modes, whose existence is determined
by the fast particles, is investigated in cases where these particles do not move freely and their motion
is bounded to restricted orbits. A nonuniform equilibrium magnetic field is included into the bump-
on-tail instability problem of a plasma wave. The parallel field gradients account for the existence of
different orbit topologies of energetic particles. With respect to fast particles dynamics, the extended
model captures the range of particles motion (trapped/passing) with energy and thus represents a
more realistic 1D picture of the long range sweeping events observed for weakly damped modes,
e.g. global Alfven eigenmodes, in tokamaks. The Poisson equation is solved numerically along with
bounce averaging the Vlasov equation in the adiabatic regime. We demonstrate that the shape
and the saturation amplitude of the nonlinear mode structure depends not only on the amount of
deviation from the initial eigenfrequency but also on the initial energy of the resonant electrons in the
equilibrium magnetic field. Similarly, the results reveal that the resonant electrons following different
equilibrium orbits in the nonuniform field lead to different rates of frequency evolution. As compared
to the previous model [Breizman B.N. 2010 Nucl. Fusion 50 084014], it is shown that the frequency
sweeps with lower rates. The additional physics included in the model enables a more complete 1D
description of the range of phenomena observed in experiments.
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 2

1. Introduction

Fast particles are abundantly present in burning
plasmas. They exist either through external heating
or eventually by fusion-born alpha particles. Energetic
particle driven modes (EPMs) [1] can occur as
a result of fast particles interaction with weakly
damped plasma modes, e.g. Alfven eigenmodes
(AEs) [2]. The resulted excited modes can cause
the undesirable ejection of energetic particles from
the hot core towards the walls of a toroidal machine
[3, 4, 5]. This loss deteriorates plasma heating
and degrades the confinement in a power plant.
Accordingly, understanding the behavior of these
modes is momentous in burning plasmas of future
fusion reactors.

Experimental results, in the case of neutral beam
injection, demonstrate that EPMs, as a result of AEs
excitation, exhibit a hard nonlinear regime [6, 7, 8, 9,
10] with rapid frequency sweeping. Small deviations
from the initial eigenfrequency for the case of a near-
threshold instability |γl − γd| ≪ γd ≤ γl, where
γl is the kinetic drive and γd is the damping rate
due to dissipation in the background plasma, were
first studied using a 1D bump-on-tail (BOT) model
by Berk-Breizman (BB) and co-workers [11]. This
model shows the nonlinear process of holes and clumps
formation in the fast particle distribution function. A
pair of Bernstein-Greene-Kruskal (BGK) [12] nonlinear
modes chirping up and down in frequency is supported
by these nonlinear phase-space structures and the
frequency shifts are associated with the motion of
these coherent structures due to energy dissipation
in the bulk plasma. The much longer evolution
time scale of these nonlinear structures in comparison
with their development time scale in the explosive
formation stage is one of the key results in [11] to be
taken into consideration. It should be mentioned that
holes and clumps form not only in case of a weakly
unstable mode but also with any amount of background
dissipation [13]. The Berk-Breizman scenario has been
proved to be successful in explaining the frequency
chirping events observed in experiments with AEs
[14, 15]. Moreover, the effect of different types of
relaxation processes on the nonlinear evolution has
been investigated in [16] and [17], with the BOT code
introduced in the latter. All the mentioned models are
based on the assumption that the range of frequency
chirping is short and the mode structure is fixed.

However, experimental evidence exists for mode
activities in which the frequency shifts are as large
as the initial eigenfrequency itself [18, 19, 20]. As
the mode amplitude saturates due to flattening of
the distribution function of the energetic particles,
the physical picture of each evolving phase-space
structure is a BGK mode whose frequency changes

in time and its structure is notably affected by the
frequency shift. Recently, a nonperturbative model
based on the adiabatic description of the fast particles
contribution has been developed by Breizman [21]
using a 1D BOT instability to interpret the long
range chirping for an isolated nonlinear resonance.
This approach is premised on the assumption that
the width of the separatrix supported by the BGK
mode is small compared with the characteristic
width of the unperturbed distribution function. The
Breizman model remains valid as long as the separatrix
of the energetic particles inside the clump shrinks
for a downward shift in the frequency. As an
extension, the adiabatic description of treating an
expanding separatrix which traps the ambient particles
is presented in [22] by Nyqvist and Breizman.

In magnetized plasmas, e.g. magnetic confinement
devices, the particles gyrate about the magnetic field
lines and follow certain trajectories depending on
their energy and the magnetic field inhomogeneity.
Therefore, the impact of particle orbits on the long
range frequency sweeping events, should also be
investigated in order to better understand and control
these instability-driven phenomena. A physical system
where the energetic particles are not moving freely and
their equilibrium motion is bounded to certain orbits,
enables such an investigation through a 1D picture.
This physical model is the subject of this paper. We
add a fixed nonuniform equilibrium magnetic field to
the BOT problem presented in [21], thus creating an
energy-dependence of the particle oscillation frequency
through the mirror effect of the parallel field gradients.
In this new model, the equilibrium field is pointed
mainly in the z-direction and has Bθ = 0. For a 1D
representation, we consider only the axis (r=0) of this
magnetic mirror system and represent the magnetic
field by

B = Bc −B0 cos(keqz), (1)

where keq is the spatial frequency of the magnetic field.
We assume that the energetic particle confinement is
due to the confinement of a single magnetic moment
(µ) and treat the chirping of an unstable mode which
has a low eigenfrequency compared to the ion cyclotron
frequency and its wavelength is large compared to
the electron Larmor radius of the resonant electrons.
Therefore, the constants B0 and Bc are determined by

Bc −B0 ≫
[

miωpe

eZi

,
mev⊥
eλp

]

, (2)

where mi and me are the ion and electron mass,
respectively, ωpe is the electron plasma frequency, Zi is
the number of ion charges, e is the elementary charge,
v⊥ is the velocity of fast particle perpendicular to
the magnetic field and λp is the wavelength of the
perturbed mode. In this new model, the unperturbed
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 3

guiding center motion of the fast particles in the
equilibrium field is governed by the following orbit-
averaged Littlejohn’s Hamiltonian [23]:

H0 =
p2z
2me

− µB0 cos(keqz) + µBc, (3)

where pz is the energetic particles momentum in the
z-direction and it is assumed Az = 0 with A the
vector potential. The energetic particles interacting
with the perturbed field are considered as trapped
or passing in this magnetic mirror system, depending
on their pitch angle. Figure 1, whose construction is
detailed at the end of Subsection 2.1, demonstrates the
behavior of the equilibrium oscillation frequency of the
fast electrons versus their energy. For each frequency of
trapped particles motion in the equilibrium magnetic
field, there exist a group of passing particles having the
same frequency of the equilibrium motion. Hence, the
mode can be simultaneously in resonance with both
the trapped and passing electrons in this equilibrium
field. This trapped and passing locus model resembles
the trapped particles following the banana orbits
and the passing particles in the magnetic field lines
of a tokamak (Cf. Section 5). In addition to
enabling the impact of particle orbits on the long range
chirping of BGKmodes, the contribution from different
resonances can also be investigated through the energy
dependence.

The nonlinear wave equation is expanded using
Fourier decomposition which allows us to find an
explicit expression for the Hamiltonian of the fast
particles motion in terms of the action-angle variables
of the unperturbed motion. This expansion, together
with treating the kinetic equation adiabatically, allows
us to implement a numerical treatment to investigate
the impact of particle orbits on the structure and the
sweeping rate of the nonlinear wave.

In Section 2, the basic system of equations adopted
for the analysis and the dynamic equations of the
unperturbed motion is presented, followed by the
derivation of the linear growth rate, the equation for
the BGK mode structure and the chirping rate. The
numerical scheme used for solving the equations is
assigned to Section 3. Section 4 presents the results in
the regions where the adiabatic invariant of the trapped
particles in the BGK mode decreases (the separatrix
shrinks) during chirping and the effect of the electrons
equilibrium orbit on the nonlinear evolution of the
mode. Finally, Section 5 contains concluding remarks.

2. The model

In this extended 1D BOT model, we study a purely
electrostatic mode in a plasma consisting of static
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Figure 1. Normalized equilibrium frequency of the fast particles
in the nonuniform magnetic field vs. energy parameter. The
dotted line shows a sample eigenfrequency simultaneously in
resonance with particles of two different orbit types

background ions, cold electrons responding linearly
to the mode and fast electrons which are trapped
and co/counter-passing in the nonuniform magnetic
field and are in resonance with the electrostatic mode.
We focus on propagation and dynamics parallel to
the equilibrium magnetic field where the cold plasma
has an isotropic distribution and its density will be
uniform along the magnetic field. The distribution
function of each group of the fast electrons, which
is treated through the Vlasov equation, is assumed
to be a linearly increasing function of the fast
electrons energy providing the instability drive. The
damping mechanism is modelled by a Krook collision
model, which induces frequency chirping behavior
when affecting the resonant energetic electrons as an
energy sink. The system of equations considered
to investigate both the linear evolution of the mode
and the structure of the BGK mode during frequency
chirping consists of Poisson, Vlasov, equation of motion
and continuity equation, given by

ǫ0
e

∂2U

∂z2
= −e

[

∑

α

∫

f̃αdv + δnc

]

, (4a)

∂fα
∂t

+ {fα, Hα} = 0, (4b)

∂Vc

∂t
= − 1

me

∂U

∂z
− νVc, (4c)

∂δnc

∂t
= −nc

∂Vc

∂z
, (4d)

with α a label that denotes the orbit type of the fast
electrons motion in the magnetic field: (α = T) and
(α = P) for the trapped and passing electrons in this
field, respectively. The Poisson bracket is denoted by
{} in equation (4b). The total distribution function of
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 4

energetic electrons is fα = Feq,α+f̃α, with Feq,α and f̃α
being the initial and the perturbed parts, respectively.
The energy of the electrostatic mode is given by U ,
ǫ0 is the permittivity of free space, ν = 2γd is the
Krook collision frequency of the cold electrons, Vc is
the flow velocity of the cold electrons and nc and δnc

are the unperturbed and perturbed density of the cold
electrons, respectively.

2.1. Fast particles orbits and dynamics

For the completely integrable system consisting
of trapped and co/counter-passing particles whose
motion is goverened by the Hamiltonian presented in
equation (3), it is possible to transform canonically
from the variables (z, pz) to action–angle variables
(θ, Jα), written as

Jα=T =
1

2π

∮

pzdz

=
2

π

∫ zmax

0

√

2me [E − µBc + µB0 cos (keqz)]dz

=
8
√
meµB0

keqπ
[(ζ − 1)K (ζ) + E (ζ)] (5a)

Jα=P =
1

2π

∫ λ

0

pzdz =
4
√
µB0

keqπ
E
(

ζ−1
)

, (5b)

where Jα is the action for the unperturbed motion of
the fast particles, zmax is determined by pz = 0 using
equation (3), λ is the wavelength of the equilibrium
field, E is the unperturbed energy denoting the orbits,
ζ is the energy parameter given by

ζ =
E + µ (B0 −Bc)

2µB0
(6)

and K(ζ) and E(ζ) are the complete elliptic integral of
the first and second kind, respectively, given by

K (ζ) =

∫ π
2

0

d̺
√

1− ζ sin2 ̺
(7a)

E (ζ) =

∫ π
2

0

√

1− ζ sin2 ̺d̺. (7b)

Using the canonical equations of motion, the
frequency of the motion reads

Ωα=T =
∂H0,α=T

∂Jα=T

=
keqπµB0

2K (ζ)
√
meµB0

, (8a)

Ωα=P =
keqπµB0

√
ζ

K (ζ−1)
√
meµB0

, (8b)

The behavior of these frequencies (shown in figure 1)
is similar to the bounce or transit frequency of the
guiding center motion in tokamaks [24].

2.2. The linear growth rate

In this subsection, we investigate the linear interac-
tion between the plasma mode and the fast particles
that are trapped and co/counter-passing in the equi-
librium magnetic field. For a traveling wave solution,
the general form of the physical quantities can be rep-
resented as U =

∑∞
n=1

eφn

2 exp [in (kpz − ωt)] + c.c =
∑∞

n=1
eφn

2

∑∞
p=−∞ Vα,n,p (Jα) exp [i (pθ − nωt)] + c.c

and f̃α =
∑∞

n=1

∑∞
p=−∞ f̂α,n,p (Jα) exp [i (pθ − nωt)]+

c.c, where ω = ωr + iγl is the complex frequency, kp
the wave-number of the plasma mode, Vα,n,p (Jα) the
orbit averaged mode amplitude which specifies the cou-
pling strength and plays the same role as the so-called
matrix element in [25, 26], given by

Vα,n,p =
1

2π

∫ π

−π

exp (inkpz) exp (−ipθ) dθ

=
1

2π

∫ π

−π

cos (nkpz − pθ) dθ, (9)

where z (J, θ) is presented in Appendix A and we
have used the property that z is an odd function of
θ (see figure 5). In the previous BOT models for
long range chirping [21, 27, 22], Vα,n,p is unity for
the dominant resonance and is zero otherwise. In
contrast, the presented approach enables investigation
of different types of resonances in wave-particle
interaction through a 1D model. It is noteworthy
that the value of kp/keq = m, where m is an integer,
can be associated with the mode numbers in realistic
geometries.

The total Hamiltonian describing the fast particle
motion can be written in the form, Hα = H0,α +
U . This Hamiltonian along with the linearization of
equation (4b), is used to derive the linearized Vlasov
equation in the form given by

∂f̃α
∂t

+
∂f̃α
∂θ

∂H0,α

∂Jα
=

∂Feq,α (Jα)

∂Jα

∂U

∂θ
. (10)

Neglecting the higher harmonics (n ≥ 2) in the linear
approximation,

f̂α,n=1,p =
peφn=1Vα,n=1,p (Jα)

∂Feq(Jα)

∂Jα

2 (pΩα − ω)
. (11)

It can be infered from expression (11) that the
resonance condition is

ωr = pΩα. (12)

The sign of Ωα is affected by the definition of the angle
and considering Ωα > 0, the resonance condition will
be satisfied only for p > 0. This means the lower
summation index for p in U and f̃α should be set to
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 5

one and the negative values of p correspond to non-
resonant particles.

The perturbed density of the cold electrons can be
derived from the linear fluid equations, (4c) and (4d).
To first order in perturbations, we have

Vc =
kpU

ωme

, (13a)

δnc =
k2pncU

meω2
. (13b)

Now we substitute the relevant terms into (4a) to find
the dispersion relation of the mode given by

ǫ0kpme

e2

(

1−
ω2
pe

ω2

)

=

∑

α

∫

∑

p

p
(

∂Feq,α

∂Jα

)

pΩα − ω
V 2
α,n=1,pdJα, (14)

where ωpe =
√

nce2

meǫ0
is the electron plasma frequency.

Neglecting the small contribution of the principal value
which does not modify the real part of the frequency
significantly, allows us to set ωr = ωpe. Assuming
γl ≪ ωpe (the wave evolves slowly compared with ω−1

pe ),
equation (14) can be solved for ω. Consequently, the
linear growth rate is found to be

γl =
ωpeπe

2

2ǫ0kpme

∑

α

∑

p

[

∂Feq,α

∂ζα
V 2
α,n=1,p

×
∣

∣

∣

∣

dΩα

dζα

∣

∣

∣

∣

−1

Ωα(Jα)=
ωpe
p

]

(15)

which involves summing the contribution from all the
resonances denoted by p. Equation (15) is a function
of the energy parameter (ζ). This indicates the
dependency of the linear growth rate on particle orbits
(see figure 3). It should be noted that the contribution
from the counter-passing electrons in the equilibrium
field is much less than the co-passing ones. This can
be shown by changing z to −z in equation (9) and
evaluating the corresponding values of the coupling
strength for counter-passing electrons numerically.

2.3. Nonlinear BGK modes

Nonlinear frequency chirping can occur in unstable
systems both near or far from marginal stability, in the
absence of collisions. For a near-threshold instability,
the presence of dissipation leads to the formation
of an unstable plateau in the distribution function
of the energetic electrons which supports sideband
oscillations that finally evolve into chirping modes
[11, 13]. In this case, the chirping mode emerges nearly
immediately near the marginal stability. However,

for the case of a far from threshold instability, the
system is so unstable that many modes are likely to
be excited. If modes are comparable in frequency
with overlapping eigenfunctions, this may lead to mode
overlap. Simple chirping can however naturally occur
in experiment when the system first goes unstable
where there is only a discrete number of unstable
modes that can arise from a near continuum of damped
modes. Accordingly, we consider the case of a near-
threshold instability. The condition dω

dt < ω2
b , with

ω (t) the frequency of the BGK mode and ωb the
bounce frequency of trapped electrons in this mode,
ensures the existence of a trapping structure with a
hole/clump in the phase-space of energetic particles.
After development, the time scale of the motion of
already established holes and clumps is much longer
than the time scale of the energetic particles motion
trapped in the BGK mode, i.e. ω−1

b [11, 28]. In the
present model, we focus on the adiabatic description
of nonlinear BGK modes and construct our formalism
based on the limit

[

dωb

dt ,
dω
dt

]

≪ ω2
b ∼ γ2

l ∼ γ2
d , where

the kinetic equation can be bounce-averaged to find the
perturbed distribution function of the fast electrons.
The adiabatic limit should, in general, be checked if it
remains valid as the frequency deviates from the initial
eigenfrequency [28, 29, 30].

Adopting a Fourier expansion for the periodic
structure, the electrostatic energy of the nonlinear
BGK mode can be written in the form

U [z, t] =
∑

n

An(t) cos [n (kpz − φ (t))] , (16)

where the Fourier coefficients An(t) evolve on a slow
time scale but the periodic behavior of the BGK mode
represents rapid oscillations with a time scale on the
order of the inverse initial plasma frequency. The
motion of the fast electrons can be investigated using
the following Hamiltonian

Hα = H0,α (Jα) +
1

2

∑

n

∑

p

An (t)

× Vα,n,p exp [i (pθ − nφ (t))] + c.c, (17)

written in terms of the action–angle variables of
the unperturbed motion. A simple canonical
transformation can be used to cancel the fast time scale
included in φ (t). We consider θ̃l = lθ−φ (t) and J̃α =
Jα

l
and the type 2 generating function for this canonical

transformation is Φ
[

θ, J̃α, t
]

= lθJ̃α − φ (t) J̃α, where

l = p
n
denotes the type of the resonance. Considering

the first resonance as having the dominant contribution
to the interaction, the model can be evaluated by
setting l = 1. In section 4, it is discussed that the
contribution from the first resonance is dominant in
this model. However, other types of resonances can be
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 6

treated likewise. The new Hamiltonian is

Kα(θ̃, J̃ , t) = H0,α

(

J̃α

)

− dφ (t)

dt
J̃α +

1

2

∑

n

An (t)Vα,n,n exp
(

inθ̃
)

+ c.c. (18)

The small separatrix width assumption allows us to
neglect the higher order terms in the Taylor expansion
of the unperturbed Hamiltonian near the resonant

orbit. In addition, we also approximate Vα,n,n

(

J̃
)

with the first term of its Taylor expansion about the
value of action variable at resonance, denoted by Jres,α.

Using
∂H0,α

∂J̃α

∣

∣

∣

J̃α=Jres,α(t)
= Ωα = dφ(t)

dt = ω (t) , the

new Hamiltonian becomes

Kα =
1

2

∂2H0,α

∂J̃2
α

∣

∣

∣

∣

J̃α=Jres,α(t)

(

J̃α − Jres,α (t)
)2

+

1

2

∑

n

An (t)Vα,n,n exp
(

inθ̃
)

+ c.c. (19)

Substituting Kα with the extremum value of the
BGK mode electrostatic energy in equation (19), gives
the dynamics of the fast electrons on the separatrix
supported by the nonlinear mode. This condition
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Figure 2. The panels (a) and (b) describe energy contours in
phase space of the electrons which are passing and trapped in
the equilibrium field, respectively. The black lines specifiy the
trajectories of the passing electrons and the shaded area is a
sample of the adiabatic invariant of the trapped electrons in the
nonlinear BGK mode. The red line is the separatrix.

is used to identify the boundary of the trapped and
passing electrons in the BGK mode, i.e. the separatrix.
A simple manipulation of equation (19) gives

J̃α,± − Jres,α (t) =

±
[(

Uext,α − 1

2

∑

n

An (t)Vα,n,n (Jres,α)

× exp
(

inθ̃
)

+ c.c
) 2

∆α

]
1
2

, (20)

where Uα,ext is the extremum value of the BGK

mode energy. The value of
∂2H0,α

∂J̃2
α

∣

∣

∣

J̃α=Jres,α(t)
=

∂Ωα

∂J̃α

∣

∣

∣

J̃α=Jres,α(t)
(denoted by ∆α) can be negative or

positive for the trapped or passing electrons in the
equilibrium field, respectively. Mathematically, this
affects Uext,α in order to have a positive value under
the square root in equation (20) and from the physical
point of view, it shows that the passing electrons in
the magnetic field are trapped in the energy well of
the BGK mode, while the trapped electrons in this
field are trapped in the energy hill of the BGK mode.
This implies

Uext,α =

{

Umin, α = T

Umax, α = P
. (21)

Phase-space trajectories of constant energy for the
motion of energetic particles in the BGK mode are
plotted in figure 2. It is shown that the separatrix
supported by the nonlinear mode corresponding to
the electrons trapped in the equilibrium magnetic field
(figure 2(b)) has a phase shift of π with respect to the
separatrix related to the passing group (figure 2(a)).

As the separatrix moves adiabatically, the phase-
space area enclosed by the trajectories of the deeply
trapped particles in the nonlinear wave, i.e. the shaded
areas in figure 2, is conserved. Without trapping
or detrapping over this region, the aforementioned
conservation ensures that the value of the distribution
function is conserved. The separatrix moves the
trapped electrons in the BGK mode while the passing
electrons are affected through the direction of their
motion [21]. The adiabatic invariant of the motion of
these electrons in the BGK mode reads (see Appendix
B for more details)

Iα = 2

∫ 2π

0

[(

Kα − 1

2

∑

n

An(t)Vα,n,n

× exp
(

ipθ̃
)

+ c.c

)

2

∆α

]
1
2

dθ̃. (22)
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 7

Substituting expression (16) into equation (4a) gives

−
∑

n

An(t)n
2k2p cos [n (kz − φ (t))] = −e2

ǫ0

×
[

1

me

∑

α

∫ ∞

−∞

f̃α(z, pz)dpz + δnc

]

, (23)

where δnc can be derived under the linear response
assumption of the bulk electrons. Similar to subsection
2.2, we multiply equation (23) by cos [n (kpz − φ(t))]
and integrate over one wave-length. We also
write all the physical quantities in the fast particle
term in terms of the new action–angle variables
(θ̃, J̃). After substituting the Fourier expansion of

cos
[

n
(

kz(θ̃, J̃)− φ(t)
)]

and neglecting the highly

oscillating terms one finds

An (t) =
1

2πkpnc

[

ω2

n2ω̂2 − 1

]

∑

α

∫ 2π

0

dθ̃

∫ ∞

0

[

f̃α(θ̃, J)

×Vα,n,n exp
(

inθ̃
)

+ c.c
]

|J|dJ̃, (24)

where the Jacobian of the canonical transformation
(z, pz) ↔ (θ̃, J̃) is unity and ω̂ = ω

ωpe
is the

normalized frequency with respect to the initial
electron plasma frequency. In this model, the phase-
space density of the fast electrons (the distribution
function) is assumed to be the same inside the narrow
shrinking separatrix supported by the BGK mode,
the so-called top-hat model. The perturbed part
of the fast electrons distribution function dominated
by the trapped electrons inside the separatrix [21]
is calculated using the bounce averaging method
described in Appendix B,

f̃α =
{

0, passing in BGK

Feq,α (Jres (t = 0))− Feq,α (Jres (t)) . trapped in BGK

(25)

Using the above expression, equation (24) transforms
into

An (t) =
ω2

2πknc (n2ω̂2 − 1)

∑

α

[Feq,α (t = 0)− Feq,α (t)]

×
∫ 2π

0

dθ̃
[

Vα,n,n exp
(

inθ̃
)

+ c.c
]

∆J̃α,max

(

θ̃
)

, (26)

where ∆J̃α,max

(

θ̃
)

is the width of the separatrix.

Using equation (20), we have

An (t) =
ω2

πknc (n2ω̂2 − 1)

∑

α

[Feq,α (t = 0)− Feq,α (t)]

×
∫ 2π

0

[

(Uα,ext −
1

2

∑

n

An (t)Vα,n,n exp
(

inθ̃
)

+c.c)
2

∆α

]
1
2 [

Vα,n,n exp
(

inθ̃
)

+ c.c
]

dθ̃. (27)

The above equation can be solved numerically to derive
the Fourier coefficients with which we can construct the
structure of the plane wave. The numerical method
used is presented in section 3.

The trapped electrons in the BGK mode travel
in phase-space together with the nonlinear mode.
Depending on whether the clumps are trapped or
passing in the equilibrium field, their energy increases
or decreases respectively with decreasing frequency
of the mode and vice versa for the holes. Hence,
formation of a hole in the distribution function of
trapped particles in the equilibrium field accompanies
a clump in the distribution of passing ones and vice
versa. The change in the perturbed potential energy
of the trapped electrons in the BGK mode is relatively
small compared to the change in their equilibrium
energy when the change in Jres,α(t) is greater than
the change in the separatrix width (see Appendix
C for more details). More energy is released by
the fast particles via the motion of the phase-space
structures than in the process of their formation and
the released energy during chirping should compensate
the dissipated energy into the bulk. The total amount
of power released corresponding to the change of the
structure energy is given by

Pr = −
∑

α

Nα

dEα

dt
, (28)

where Nα is the total number of each group of electrons

in the hole/clump, dEα

dt = Ωα

(

dΩα

dJα

)−1
dω(t)
dt is the

rate of change of the energy of each particle and
the resonance condition allows setting Ωα = ω (t).
Regarding to the definition of the adiabatic invariant
of the trapped particles, Nα can be calculated as

Nα =
2

me

[Feq,α (t = 0)− Feq,α (t)]

×
∫ 2π

0

[(

Uα,ext −
1

2

∑

n

An (t)Vα,n,n

× exp
(

inθ̃
)

+ c.c
) 2

∆α

]
1
2

dθ̃. (29)

The work done by the collision force can be used
to calculate the dissipated power (Pd) into the bullk
via collisions. Using the equation of motion (4c) and
considering the collisional term, we have

Pd =
2πνkp
ω2me

〈U2〉, (30)

where 〈〉 denotes averaging over one wavelength and
〈U2〉 = 1

2

∑

n A
2
n (t). The released power during the

motion of the holes/clumps is equal to the power
dissipated in the bulk through collisions. This power
balance can be used to calculate the rate at which
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 8

sweeping occurs, which results in

dω (t)

dt
= −

[

νncπkp
ω3me

∑

n

A2
n (t)

]

1
∑

α Nα

(

dΩα

dJα

)−1 .

(31)

3. Numerical Scheme

In this section, we first derive the equation of the mode
structure at early stage of chirping, say t0, considering
only the contribution from the trapped electrons in the
equilibrium magnetic field. It is worth noting that here
the contribution of passing electrons in the magnetic
field to the equations of early stage is arbitrarily
neglected just for the purpose of normalization. A
simple evaluation of equation (27) at initial phase of
sweeping when Feq,α (t = 0)−Feq,α (t) = 0 and ω̂ = 1,
demonstrates that only the first Fourier coefficient is
non-zero (a sinusoidal mode structure) and is presented
by

A1,0 = −





8ω2
pe

∂Feq,T

∂ζT

∂ζT
∂ω̂

∣

∣

∣

ω̂=1

3πkpnc

√

|∆T,0|



VT,1,1,0

√

A1,0VT,1,1,0.

(32)
Here, we have used the subscript 0 to denote evaluation
at t = t0. The term A1,0 can be expressed in terms of
the linear growth rate to have

A1,0 =
162γ2

l

9|∆T,0|VT,1,1,0π4
. (33)

We also let Ân (t) = An (t) /A1,0, V̂α,n,n (t) =

Vα,n,n (t) /VT,1,1,0, Γ̂α = ∆α/|∆T,0|, Ûα,ext =
Uα,ext/A1,0VT,1,1,0 and Feq,α (t) = cαζα (t).

Normalizing equation (27) with respect to A1,0

results in

Ân (t) =





−3ω̂2

8cT
∂ζT
∂ω̂

∣

∣

∣

ω̂=1
(n2ω̂2 − 1)





∑

α

cα [ζα,0 − ζα]

×
∫ 2π

0

[(

Ûα,ext −
1

2

∑

n

Ân (t) V̂α,n,n exp
(

inθ̃
)

+c.c)
2

Γ̂α

]
1
2 [

V̂α,n,n (t) exp
(

inθ̃
)

+ c.c
]

dθ̃, (34)

which can be solved iteratively to derive the Fourier
coefficients. In order to avoid the singularity in the
numerical approach, a special treatment is applied to
the first coefficient when the values of ω are close to
ωpe. In this case, ζα (t) can be linear-approximated
around the initial plasma frequency to cancel the ef-
fect of the pole in the denominator of equation (34).

Likewise, differential equation (31) can be inves-
tigated for the early phase of the structures motion
in phase-space considering only the effect of trapped
particles in the magnetic field. Substituting expression
(29) into differential equation (31) and using equations
(15) and (33), one finds

d

dt

(ω − ωpe)
2

ω2
pe

=
ν

3

(

16γl
3π2ωpe

)2

. (35)

We define the dimensionless time τ = ν
3

(

16γl

3π2ωpe

)2

t

and multiply differential equation (31) by 3

ν

(

16γl
3π2ωpe

)2

to have

dω̂

dτ
= −

[

4

ω̂3

]

cT

∣

∣

∣

∣

(

dω̂
dζ

)−1

T,0

∣

∣

∣

∣

ζ=ζresonance

∑

n Â
2
n

∑

α sgnαcα [ζα,0 − ζα]

×
{

∫ 2π

0

[(

Ûα,ext −
∑

n

Ân

2
V̂α,n,n

× exp
(

inθ̃
)

+ c.c
) 2

Γ̂3
α

]
1
2

dθ̃







−1

(36)

where sgnα is -1 and 1 for α = T and P, respectively.
The above equation can be solved by a fourth-order
Runge-Kutta method along with the iterative method
used for solving the Fourier coefficients on the RHS.

In case that the electrons have small enough
pitch angles (deeply passing electrons with ζ ≫ 1),
their motion will not be affected by the equilibrium
magnetic field and they move freely. In other words,
θ = keqz (see figure 5(b) for ζ = 2). Subsequently,
only one resonance is non-zero and the orbit averaged
mode amplitude is equal to unity (see figure 4(b))
under this condition. In this high energy range, one
can find that kpz = pθ in the linear theory limit.
Canonical equations of motion assure θ = Ωα=Pt so
using equation (12), the resonance condition becomes
ω = kpv, where v is the particle velocity. Consequently,
solving equation (34) and differential equation (36) in
the limit that ζ ≫ 1, reproduces exactly the same
results as in [21], which serves as the benchmark of
the code and the numerical approach.

4. Results

For illustration, we have arbitrarily restricted attention
to cases where kp = keq. In the linear regime, the
plasma mode will grow at different rates depending
on the initial orbits of the electrons interacting with
the mode. Figure 3 demonstrates that the linear
growth rate decreases to zero in the limit of having
resonance with the particles close to the separatrix of
the equilibrium motion.
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Figure 3. The linear growth rate behavior, corresponding to
the first resonance, for different energy ranges of trapped and
passing particles in the equilibrium magnetic field. All the values
are normalized to the value at ζ = 0.1.

As in subsection 2.3, the first resonance (l=1)
is considered as the dominant resonance contributing
to the interaction. The first four elements of the
orbit averaged mode amplitude V̂α,n,p, indicating the

coupling strength, corresponding to the first (V̂α,n,n)

and the second (V̂α,n,2n) resonances are plotted
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Figure 4. The orbit averaged mode amplitude versus energy
parameter for (a) the trapped and (b) passing electrons in
the equilibrium magnetic field. The solid and dashed lines
correspond to first and second resonances, respectively.
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Figure 5. The position of energetic electrons (a) trapped and
(b) passing in the equilibrium magnetic field in terms of the angle
variable

in figure 4 versus energy parameter by numerical
integrating of equation (9) over θ. Investigation of
figure 4 shows that there are regions (adjacent to
ζ = 1) where the values of the dominant element
(n=1) belonging to the second resonance overtake the
values of the dominant element of the first resonance.
In itself, this may indicate that the corresponding
second resonance is dominant. However, consideration
of the linear growth rate for different resonances
shows that the first resonant (p = 1) is dominant.
This can be understood by inspection of equation

(15): the term
∣

∣

∣

dΩα

dζα

∣

∣

∣
increases with increasing the

resonance, so γl decreases with increasing resonance.
In addition, evaluating the factors of equation (34)
for higher resonances (l ≥ 2) shows that its always the
first resonance (l = 1) that has dominant contribution
to the interaction in the hard nonlinear regime.
Therefore, the submissive resonances are neglected.
The other important point concerning the coupling
strength is that all of its elements go asymptotically
to zero as the energy parameter of the electrons
approaches unity. Here, we explain this phenomenon
in more detail: the equations (A.6) and (A.12) describe
the equilibrium position (z) of the electrons in terms of
the action–angle variables in the nonuniform magnetic
field. Figure 5 illustrates this position at different times
for different energy parameters. For the case of trapped
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Figure 6. The values of the adiabatic invariant of (a) trapped
and (b) passing particles in the equilibrium magnetic field for
kp/keq = 1 at the separatrix determined by the BGK mode.
The values are normalized with respect to the values at initial
phase of chirping.

(figure 5(a)) and passing (figure 5(b)) electrons, it is
shown that for ζ ≈ 1, the electrons spend most of their
period lingering at the two ends of the magnetic mirror
system (the so-called magnetic bottle). This means
that z is almost −π/keq during a half of the period and
is almost π/keq in the other half. Therefore, exp(inkpz)
in the integrand of equation (9) is exp(inkpπ/keq) or
exp(−inkpπ/keq) in each half period. For kp/keq =
m with m an integer, we have exp(inkpπ/keq) =
exp(−inkpπ/keq) = cte and consequently the value
of the integral drops to zero as the energy parameter
approaches one (ζ ≈ 1). These electrons barely move
in z-direction, similar to the case where the electrons
are deeply trapped (ζ ≈ 0).

Prior to solving the equations for the mode
structure and the sweeping rate in the hard nonlinear
regime, it is necessary to investigate the behavior
of the adiabatic invariant (phase-space area) of the
trapped electrons in the BGK mode that are trapped
or passing in the equilibrium magnetic field. Figure 6
shows the values of the adiabatic invariant (equation
(22)) at the separatrix determined by the BGK
mode during frequency sweeping. For the case of
downward frequency sweeping, the energy of the
passing electrons in the equilibrium field decreases,
so does the corresponding value of the adiabatic
invariant (figure 6(b)). However, for trapped electrons,
energy increases for downward frequency sweeping.
Depending on the initial orbit, the adiabatic invariant
can either initially increase (ζ < 0.4 of figure 6(a) )
or decrease (ζ ≥ 0.4 of figure 6(a) ). Due to the

assumption of a flat-top distribution function over the
separatrix region, the model remains valid as long as
the separatrix supported by the BGK mode shrinks
and an expanding separatrix (an increasing adiabatic
invariant) should be avoided. Therefore, the electrons
in the following results have initial energy parameters
ζ ≥ 0.4. In this range, the coherent phase-space
structure is a hole whose separatrix area (and the
correspoding amplitude of the mode) is shrinking for
a downsweeping frequency. For the case that new
electrons are trapped into an expanding separatrix, it
is required that the value of the distribution function
of newly trapped particles is set to the value of the
ambient distribution. The latter case is not the
subject of this paper and the reader is referred to
[31, 29, 22] where the subject of expanding separatrices
are addressed.

4.1. The mode structure

Considering similar slopes for the initial distribution
of both the trapped and passing electrons in
the equilibrium magnetic field (simultaneously in
resonance with the plasma mode), the structure of
the BGK mode has been solved for different initial
electron energy parameters, namely ζα=T(t = 0) = 0.4,
0.6 and 0.8. Figure 7 illustrates the mode structure
for these initial energies in cases where ω̂= 0.8 and
0.6, constructed by solving equation (34) iteratively
for the Fourier coefficients. The results reveal that for
a nonzero change in ω̂, the nonlinear behavior of the
BGK mode is determined by the initial electron orbits.
For constant ω̂, e.g. figures 7(a), (c) and (e), the
maximum amplitude of the mode structure (maximum
value of

∑

n Âncos(nkpz) ) changes with changing
ζα=T,0, and the change in the mode amplitude
decreases with increasing ζα=T,0. The shape of the
nonlinear structure is not only affected by the amount
of change in the frequency (ω̂) but also by the initial
energy parameter (ζα=T,0). In order to explain the
observed behavior, we first calculate the contribution of
the trapped and passing particles to the mode structure
seperately while they are simultaneously in resonance
with the mode. Afterwards, the behavior of both
the equilibrium frequency and the physical quantities
appearing in equation (34) is investigated.

The Fourier coefficients are calculated by adding
the two terms on the RHS of equation (34),
corresponding to α = T and P. The seperate
contributions of these two groups of particles to the
mode structure are shown in figure 8 for similar values
of distribution function and in case of simultaneous
resonance between the plasma mode and these two
types of energetic particles. It is clear that the
contribution of the passing electrons to the nonlinear
behavior of the mode is relatively much smaller than
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Figure 7. The normalized BGK mode structure affected by electrons having different initial energies. The dashed line, included
here for comparison, represents the sinusoidal structure of the mode at early stage of frequency sweeping.

the trapped ones. The reason being that the resonance
occurs in a region where the equilibrium frequency
of passing particles has much steeper gradient in
energy (see figure 1). Therefore, for the purpose of
investigating the parameters of equation (34), we only
consider the dominant contribution from the trapped
electrons in the equilibrium magnetic field.
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Figure 8. The contribution of trapped (solid line) and passing
(dashed curve) electrons to the mode structure, where ω̂ = 0.8
and ζα=T,0 = 0.4. plotting on the same chart results in the
small contribution of passing electrons to appear as a horizontal
line

At a constant value of the normalized frequency
ω̂, a simple evaluation of equation (34) gives

Ân (t) ∝
(dω̂dζ )

2
α=T,0[ζα=T (t = 0)− ζα=T (t)]2V̂ 3

α=T,n,n

Γ̂α=T

.

(37)
Starting from different initial energies, the trapped
electrons in the equilibrium magnetic field should be
moved on different energy increments by the nonlinear
mode in order to have the same amount of change
in the frequency. This results from the nonlinear
dependency of the equilibrium frequency on the energy
parameter (see figure 1). As an example for ω̂ = 0.8,
the fast electrons having the initial energy parameters
of ζα=T,0=0.4,0.6 and 0.8 should be moved in phase-
space to the points where ζ(t)=0.783, 0.863 and 0.94,
respectively and the energy increments become shorter
for higher values of initial energy parameter. For
a linear equilibrium distribution, the difference in
the energy increments will explicitly appear in the
nominator of equation (34) through the perturbed
density term, i.e. [ζ (t = 0)− ζ (t)] . In general, the
nonlinear dependency of the equilibiurm frequency on
the energy parameter will affect the values of all the
physical parameters apearing in equation (34) for a
fixed amount of frequency shift. Figure 9 shows the

dependency of the factors
(

dω̂
dζ

)2

α=T,0
[ζ(t = 0)−ζ(t)]2,
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Figure 9. The factors in (37) versus the normalized frequency
(ω̂). The dashed, dotted and solid lines correspond to the
initial energy parameter

(

ζα=T,0

)

values of 0.4, 0.6 and 0.8,
respectively.

V̂ 3
α=T,n=1,n=1 and Γ̂−1

α=T
in expression (37) for different

ζα=T,0 and as a function of ω̂. The dependency of

Ân with ζα=T,0 can be understood by inspection of
these factors. At each ω̂ the factors decreases with
increasing ζα=T,0 and so Ân decreases. It is noteworthy

that
(

dω̂
dζ

)

α=T,0
can be calculated by differentiating

the normalized form of equation (8a) with respect to
ζ, which together with the differentiation of equation
(5a) can be used to derive Γ̂α=T.

4.2. The sweeping rate and adiabaticity validation

In this subsection, we first investigate the rate at
which the frequency of the nonlinear mode evolves in
time. Prior to solving the differential equation (36), we
evaluate the dependency of the sweeping rate

(

dω̂
dτ

)

on
the initial energy parameter of the electrons (initial

0 0.2 0.4 0.6 0.8 1 1.2

τ

0.4

0.5

0.6

0.7

0.8

0.9

1

ω̂

ζ
α=T ,0

=0.4

ζ
α=T ,0

=0.6

ζ
α=T ,0

=0.8

(1)

(2)

Figure 10. The evolution of normalized frequency versus
normalized time. The solid lines labeled (1) and (2) correspond
to the square root dependency, plotted for comparison, and the
result reported in [21], respectively.

orbits) using the behavior of the factors illustrated
in figure 9. Looking at the expression (36) for the
sweeping rate at a constant value of ω̂, it can be
inferred that

dω̂

dτ
∝ Ân(t)

3
2 Γ̂

3
2

α=T
∣

∣

∣

(

dω̂
dτ

)

α=T,0

∣

∣

∣
[ζα=T(t = 0)− ζα=T(t)]V̂

1
2

α=T,n,n

.

(38)
Using expression (37) one finds

dω̂

dτ
∝
(

dω̂

dζ

)2

α=T,0

[ζα=T(t = 0)− ζα=T(t)]
2
V̂ 4
α=T,n,n.

(39)
Similar to subsection 4.1, one can consider figures 9(a)
and (c) at a constant ω̂ to investigate the value of the
RHS of expression (39) for different electron orbits. It
is clear that the RHS value becomes lower when the
resonance occurs with the electrons (trapped in the
fixed equilibrium magnetic field) having higher initial
energy parameter (ζα=T,0). Therefore, we expect the
mode frequency to chirp slower when the initial energy
parameter of the electrons is higher. This can be
verified by solving differential equation (36) using the
numerical method stated in section 3 for different
initial orbits. Figure 10 illustrates the time evolution of
ω̂ for different values of ζα=T,0. The results reproduce
the square root dependency for initial stages of chirping
as in [11, 21]. However, it is shown that in this
model, the holes and clumps can move with much lower
rates compared with the sweeping rates observed in
[21]. On the other hand, as predicted above, for higher
initial energy parameter of the trapped electrons in
the equilibrium magnetic field, the frequency tends to
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Figure 11. The evolution of the normalized bounce frequency (a,b), normalized time rate of change in the bounce frequency (c,d)
and the value of the RHS of inequality (45) (e,f). Panels (a,c,e) and (b,d,f) correspond to trapped and passing electrons in the
magnetic field, respectively. The dashed, dotted and dash-dotted curves represent an initial energy parameter value of 0.4, 0.6 and
0.8, respectively, for trapped electrons in the magnetic field. At τ = 0, the values of panels (c,d) go asymptotically to −∞ and for
panels (e,f) the corresponding values are zero.

decrease more slowly.
As mentioned earlier in subsection 2.3, the

adiabaticity condition invoked for the analysis, should
be checked if it remains satisfied when the frequency
deviates from the initial eigenfrequency. Using the
total Hamiltonian of the resonant electrons (Equation
(19)), the canonical equations of the perturbed motion
of these electrons, read

˙̃Jα =
∑

n

AnVα,n,nn sin
(

nθ̃
)

, (40a)

˙̃
θ =

∂2H0,α

∂J̃2
α

∣

∣

∣

∣

J̃α=Jres,α

(

J̃α − Jres,α

)

. (40b)

In the absence of collisions, the motion of resonant
electrons which are trapped in the equilibrium field
and are deeply trapped in the BGK mode satisfies the
pendulum equation

¨̃
θ = ∆α=T

∑

n

AnVα=T,n,nn
2θ̃, (41)

with
∣

∣∆α=T

∑

n AnVα=T,n,nn
2
∣

∣ = ω2
b,α=T

, where we

have used sin
(

nθ̃
)

≈ nθ̃ at the center of the

separatrix, the so-called O-point which is at θ̃ = 0 for
trapped electrons in the magnetic field (see figure 2(b)).

Similarly, for passing electrons in the magnetic field
that are deeply trapped in the BGK mode, we have

d2

dt2
(θ̃ − π) = ∆α=P

∑

n

AnVα=P,n,nn
2 cos (nπ)

×
(

θ̃ − π
)

, (42)

with
∣

∣∆α=P

∑

n AnVα=P,n,nn
2 cos (nπ)

∣

∣ = ω2
b,α=P

,

where we have expanded sin
(

nθ̃
)

about the O-point

at θ̃ = π for passing electrons in the magnetic field (see
figure 2(a)).

We introduce the dimensionless variable ω̃b,α =
ωb,α

ωb,α=T,t=0
, with

ωb,α=T,t=0 =
√

|A1,t=0Vα=T,n=1,n=1∆α=T|, (43)

the bounce frequency of resonant electrons (trapped in
the magnetic field) in their corresponding separatrix in
the BGK mode at early stage of chirping denoted by
t = 0. We can write the adiabatic limit, introduced in
subsection 2.3, in the form

dτ
dt

ωb,α=T,t=0
≪

ω̃2
b,α

∣

∣

∣

dω̃b,α

dτ

∣

∣

∣

. (44)
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 14

Using equation (33) and the expression for the
dimensionless time introduced in section 3, one finds

νγl,α=T

w2
pe

≪
9π2ω̃2

b,α

16
∣

∣

∣

dω̃b,α

dτ

∣

∣

∣

. (45)

The time evolution of ω̃b can be investigated in the
same numerical code implemented to solve differential
equation (36) for constructing figure 10. At each
time step in the fourth-order Runge-Kutta method,
the corresponding parameters can be used to derive
ω̃b,α (τ). Afterwards, one can readily use numerical

differentiation methods to find
dω̃b,α

dτ .
Figures 11(a) and (b) shows the normalized

bounce frequency of the trapped electrons about
the O-point of the separatrix inside the BGK mode
corresponding to the trapped and passing electrons in
the magnetic field, respectively, for the initial energy
parameters considered in the previous subsections.
The corresponding values of

dω̃b,α

dτ are demonstrated
in figures 11(c) and (d), where the values decrease to
−∞ as we approach τ = 0. Therefore, the value of
the RHS of (45), illustrated in figures 11(e) and (f ),
drops to zero at the early stage of frequency chirping.
This means that the adiabatic limit is never formally
satisfield at initial stage of phase-space structures
evolution. Nevertheless, we have γl, ν ≪ ωpe and as a
result the period during which the adiabatic condition
is not satisfied is extremely short. The results reveal
that as the system evolves while the adiabaticity
limit is initially violated, for later evolution of phase–
space structures the RHS value of (45) monotonically
increases. Therefore, once the adiabatic limit (45) is
satisfied with regards to the value of LHS, it will remain
valid for later evolution. It should be noted that the
adiabaticity condition is better satisfied for the passing
electrons in the magnetic field compared to the trapped
ones.

5. Concluding remarks

The more realistic 1D model shows that apart from
the amount of deviation from the initial eigenfrequency
during frequency sweeping, the initial orbit (initial
energy parameter) of the particles in a nonuniform
equilibrium magnetic field, determines both the linear
and the hard nonlinear evolution behavior of a plasma
mode. The model also resolves the simultaneous
contributions from the two groups of particles having
different orbit types as well as the contribution from
higher resonances. We find however that the first
resonance is dominant. We also identify different
behavior of the adiabatic invariant in different energy
regions. The model shows that for a constant trend
in frequency sweeping, either upward or downward,

the adiabatic invariant can have both positive and
negative gradients in the energy parameter depending
on the energy region considered. This behavior
depends on factors such as the resonance number,
the proportion of the plasma mode wave-number to
the spatial frequency of the equilibrium field (kp/keq)
and whether the particles were initially trapped or
passing in the equilibrium field. This indicates that
for realistic geometries where particles interacting
with the mode can follow different equilibrium orbits,
an extended approach is required to calculate the
perturbed density inside the holes and clumps. The
required approach should take into account that the
adiabatic invariant (phase-space area) at the separatrix
can initially expand followed by a shrinking behavior
and vice versa, depending on the initial orbit of the
energetic particles. This extension can highly benefit
from the method presented in [22].

The presented model in this manuscript provides
a more effective understanding of hard nonlinear wave-
particle-plasma interactions in realistic geometries
provided that the mode is subject to weak continuum
damping (a global mode) i.e. its structure in the
linear regime is not mainly determined by the energetic
particles. Two different orbit topologies of energetic
particles created by adding a nonuniform magnetic
field to the 1D bump-on-tail instability problem, bring
it into anology with tokamaks where trapped and
passing topologies exist which can both resonate with
modes with different coupling strength factors. In a
high aspect ratio tokamak, the total magnetic field
follows

B ∝ 1

R0 + r cos θ
∝ 1

R0
(1− ǫ cos θ) , (46)

where B is the magnetic field, ǫ is the inverse aspect
ratio, θ is the poloidal angle and R0 and r are the major
and minor radius, respectively.

Using the orbit-averaged Littlejohn’s Hamilto-
nian, we have

H0 − µB0 =
1

2
miv

2
‖ − µB0ǫ cos (θ) , (47)

where H0 is the equilibrium Hamiltonian and v‖ is the
velocity in the direction of the magnetic field. Taking
into account the symmetry of the magnetic field in
toroidal direction in realistic geometries and assuming
that the deviation of the fast particles from the
flux surface is infinitesimal, the above Hamiltonian is
comparable to the equilibrium Hamiltonian presented
in equation (3). Further restrictions on the
perturbation such as symmetry in toroidal direction,
being localized on one flux surface and the assumption
that the perturbation on different flux surfaces are
unlinked, might let the presented model to describe
some features of electrostatic axisymmetric modes
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Hard nonlinear evolution of BGK modes in the presence of fast particle orbits 15

(n = 0, where n is the poloidal mode number),
namely global geodesic acoustic modes (GGAMs)
in more realistic geometries [32]. Nevertheless, an
exact description of excited Global-Alfven-Eigenmodes
(GAEs) with an evolving mode structure during long
range frequency deviations requires the extension of
the presented model, which is a part of our ongoing
research. Another avenue for further research is to
relax the assumption that the fast electron distribution
function is linear.
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Appendix A. Calculation of z (J, θ)

Using the equilibrium Hamiltonian (3) and pz = me
dz
dt ,

we find

2

keq

dσ

dt
=

√

2

me

[E + µ (Bc +B0 cos (2σ))] (A.1)

where σ =
keqz

2 . We take σ (t = 0) = 0, to have

√
2k−1

eq
√

E+µ(B0−Bc)
me

∫ σ

0

dσ
√

1− 2µB0

E+µ(B0−Bc)
sin2 (σ)

=

∫ t

0

dt,

(A.2)
where we have used cos(2σ) = 1− 2 sin2 σ.

I) For passing electrons in the nonuniform
magnetic field, the coefficient of sin2 (σ) in integral
equation (A.2) is less than unity. After changing the
coordinates to action-angle variables in subsection 2.1,
we can use the canonical equations of motion to find

t =
θ

Ωeq,α
, (A.3)

where Ωeq,α=P is presented by equation (8b). Substi-
tuing (A.3) into the RHS of (A.2), we find

∫ σ

0

dσ
√

1− 2µB0

E+µ(B0−Bc)
sin2 (σ)

=
θK
(

ζ−1
)

π
. (A.4)

According to the definition of Jacobi elliptic functions,
we find

Sn

(

θK
(

ζ−1
)

π
, ζ−1

)

= sinσ, (A.5)

which gives

zα=P =
2

keq
sin−1

[

Sn

(

θK
(

ζ−1
)

π
, ζ−1

)]

(A.6)

II) For trapped electrons in the nonuniform
magnetic field, the coefficient of sin2 (σ) in integral
equation (A.2) is higher than unity. we implement a
change of variables as follows,

sin (η) =
sin (σ)

sin (σmax)
(A.7a)

dσ =
sin (σmax) cos (η)

√

1− sin2 (σmax) sin
2 (η)

dη (A.7b)

The maximum value of z is 1
keq

cos−1
(

µBc−E
µB0

)

,

derived from pz = 0. Hence, cos (2σmax) = µBc−E
µB0

and

sin2 (σmax) =
E + µ (B0 −Bc)

2µB0
. (A.8)

Now we substitute equations (A.7a) and (A.7b) into
(A.2) and use (A.8) to have

√
2 sin (σmax)

keq

√

E+µ(B0−Bc)
me

∫ η

0

dη
√

1− sin2 (σmax) sin
2 (η)

= t,

(A.9)
where we have used cos η

√

1−
2µB0

E+µ(B0−Bc)
sin2(σ)

= 1. Using

equation (A.3) for trapped electrons in the magnetic
field and equation (8b), we find

∫ η

0

dη
√

1− sin2 (σmax) sin
2 (η)

=
2θK (ζ)

π
, (A.10)

which gives

Sn

(

2θK (ζ)

π
, ζ

)

= sin η =
sinσ

sinσmax
. (A.11)

We find

zα=T =
2

keq
sin−1

[

√

ζSn

(

2θK (ζ)

π
, ζ

)]

. (A.12)

It should be mentioned that equations (A.6) and (A.12)
can be inverted for the corresponding angle θ(z, ζ)
variables.

Appendix B. Adiabatic invariant and bounce

averaging method

The adiabatic invariant for a Hamiltonian K(θ̂, Ĵ , λ ≡
βt) with slow time dependency (β ≪ typical orbit
frequencies) is

I∞ = I (q, p, λ)+βI1 (q, p, λ)+β2I2 (q, p, λ)+..., (B.1)

which the lowest term is commonly taken to

be the action, I (E, λ) =
∮

Ĵ
(

θ̂, E, λ
)

dθ̂ with

K
(

θ̂, Ĵ , λ
)

= E. We transform to action-angle vari-

ables using the generating function Φ2

(

θ̂, I, λ
)

=
∫ θ̂

θ̂0(I,λ)
dθ̂′Ĵ

(

θ̂′,K (I, λ) , λ
)

. So the Hamiltonian

transforms into Knew (Θ, I, λ) = K (I, λ)+β ∂Φ2

∂λ
. Now

we consider the trapped electron Vlasov equation

∂f

∂t
+

∂f

∂Θ

∂Knew

∂I
− ∂f

∂I

∂Knew

∂Θ
= 0. (B.2)

Using the equations of motion we have

Θ̇ =
∂Knew

∂I
= ωBounce +

∂

∂I

∂Φ2

∂t
, (B.3a)

İ = −∂Knew

∂Θ
= − ∂

∂Θ

∂Φ2

∂t
, (B.3b)
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Substituting the above expressions in equation (B.2)
gives

∂f

∂t
+

∂f

∂Θ
ωBounce +

∂f

∂Θ

∂

∂I

∂Φ2

∂t
− ∂f

∂I

∂

∂Θ

∂Φ2

∂t
= 0.

(B.4)
Following the same approach in [27], f can be expanded
in terms of the small parameter β = τB

τs
to have

f = f0 + βf1 + β2f2 + ..., (B.5)

where f0 is the bounce average of f over Θ. Using
expression (B.5), we substitute for f in equation (B.4).
To lowest order (O (1)) in β, one finds

∂f0
∂Θ

= 0. (B.6)

To next order (O (β)),

∂f0
∂t

+ β
∂f1
∂t

+
∂f0
∂Θ

ωBounce + β
∂f1
∂Θ

ωBounce

+
∂f0
∂Θ

∂

∂I

∂Φ2

∂t
+ β

∂f1
∂Θ

∂

∂I

∂Φ2

∂t
− ∂f0

∂I

∂

∂Θ

∂Φ2

∂t

− β
∂f1
∂I

∂

∂Θ

∂Φ2

∂t
= 0. (B.7)

The second, sixth and eighth terms are on the order
of β2

(

O
(

β2
))

and can be neglected at this stage.
Equation (B.6) shows that f0 is independent of Θ,
which allows us to set the fifth term to zero. Therefore,
we reach

∂f0
∂t

+ β
∂f1
∂Θ

ωBounce −
∂f0
∂I

∂

∂Θ

∂Φ2

∂t
= 0. (B.8)

After averaging (B.8) over Θ, the second and third
terms vanish and we find

∂f0
∂t

= 0. (B.9)

We define f0 = δf + 〈Feq (Jres (t))〉, where <> denotes
averaging over Θ and f0 (t = 0) = Feq (Jres (t = 0)).
The uniformity assumption of the distribution function
over the separatrix region assures 〈Feq (Jres (t))〉 =
Feq (Jres (t)). Hence, f0 (t) = δf + Feq (Jres (t)).
According to (B.9), f0 should remain constant during
frequency sweeping which gives

δf = Feq (Jres (t = 0))− Feq (Jres (t)) . (B.10)

Appendix C. Validation of the smallness of the

perturbed potential energy change

As illustrated in figure C1, we consider the case of a
long range frequency chirping where the separatrix has
approximately vanished. Therefore, we have Jα,+(t) ≈
0. The change in the equilibrium energy (Eeq,α) of the

0 0.2 0.4 0.6 0.8 1

θ̃/2π

J
res,α

 (t)

J
res,α

 (t=t
0
)

J
α,+

(t)

J
α,+

(t=t
0
)

Figure C1. Schematic of a separatrix shrinkage with Jα,+(t) ≈
0 during long range frequency chirping.

trapped electrons in the BGK mode is

∆Eeq,α =
∂H0,α

∂Jα
∆Jres,α = ωpe∆Jres,α, (C.1)

where ∆Jres,α = Jres,α(t = t0) − Jres,α(t). Using
equation (20) , we find

∆Jα = Jα,+(t = t0)−Jα,+(t) ≈
√

A1,0Vα,1,1,0

|∆α,0|
, (C.2)

where, t = t0 is denoted by the subscript 0. The change
in the perturbed energy (Eperturbed,α) of the electrons,
which is the change in the perturbed potential energy,
equals

∆Eperturbed,α = A1,0Vα,1,1,0. (C.3)

We have claimed that if the change in Jres,α is
greater than the change in the separatrix width, then
∆Eperturbed,α ≪ ∆Eeq,α. Therefore, we have

A1,0Vα,1,1,0 ≪ ωpe∆Jres,α. (C.4)

The above inequality can be written into
√

A1,0Vα,1,1,0

|∆α,0|
· ωB ≪ ωpe∆Jres,α, (C.5)

where ωB =
√

A1,0Vα,1,1,0|∆α,0| is the bounce
frequency of trapped particles inside the separatrix in
the BGK mode. Using equation (C.2) we find

∆Jres,α
∆Jα

≫ ωB

ωpe
≈ γl

ωpe
. (C.6)

The RHS value is much less than unity (γl ≪ ωpe).
Therefore, if the change in Jres,α is greater than the
change in the width of the separatrix, the condition
(C.6) is sufficiently satisfied.
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