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Abstract 

 In this report, a detailed description of the 3-D version finite element pro-
gram FESTER is given. This includes: 1. A brief introduction to the package 
FESTER; 2 .  Preparing an input data file for the 3D version of  FESTER;  
3. Principal stress and stress invariant analyses; 4. 2D joint element (surface 
contact) characterisation and its mathematical formulation; 5. Formulations 
of the 3D stress-strain analyses for both isotropic and anisotropic materials, 
plane of weakness and cracking criteria; 6. 3D brick elements, infinity elements 
and their corresponding shape and mapping functions; 7. Large-displacement 
formulations; 8. Modifications to the subroutines INVAR, JNTB, TMAT, 
MOD2 etc;  9. Numerical examples; and 10. Conclusions. 
 

§1.  An introduction to FESTER 

 In this section, we present a brief introduction to the finite element package FES-
TER (Finite Element Simulation of Tunnelling & Excavation in Rocks). 

1.1. Development of FESTER 

 The computer program FESTER was originally developed on an SERC/British 
Coal co-funded research project at the Oxford University Computing Laboratory between 
1985 and 1986. Since the end of 1986, it has been continuously developed at the De-
partment of Mathematics and Statistics of Brunel University under the support of SERC 
(current grant is to finish in 1992) and British Coal (finished in 1988). The program 
structure is based on the linear elastic finite element package FINEPACK developed at 
the Department of Civil Engineering of University College Swansea [13,20,21,etc.] FES-
TER is developed to model the deformation and stresses in the rock mass surrounding 
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underground openings and to predict the failure behaviour of rock masses. It uses elasto-

viscoplastic theory for the nonlinear analysis. The detailed theory and features including 
a user's guide can be found in a previous report [32]. Some of the work involved in 

the development of the program was also reported in several published papers by the 

main developer Reed [30-34 ]. Since 1989, the program has been further developed to 

incorporate a few other features based on the co-operative research work at the Rock 

Mechanics Research Group of Imperial College [22-27]. 

Since July 1990, FESTER has been developed to cope with 3-D stress-strain anal- 

yses for both isotropic and anisotropic rocks. It is mainly aimed at analysing deep-level 

excavations using 3-D finite elements, including infinite elements and joint elements (2D 

contact). This work includes the introduction of 8-noded and 20-Noded brick elements, 

an infinite element, 2-D joint element, 3-D rock mass strata modelling, the numerical 

algorithm for 3-D stress-strain analyses for elasto-viscoplastic rock models etc. 

1.2. Mathematical models in 3-D FESTER 

 The 3-D version of the program FESTER is an (3-D) elasto-viscoplastic finite 

element model for analysis of rock and rock mass behaviour. It is developed from its 

previous 2-D version which is described in detail in [20,27,32,34]. The theory and nu-

merical algorithm are almost the same but the formulations may be different. The main 

features of the analyses, in addition to that described in [34], are as follows: 

A. 3D Element types: 

 The following types of element are used in FESTER:  

(i). the 8-noded linear brick element for representing the rock mass; 

(ii). the isoparametric 20-noded quadratic brick element for representing the rock mass; 

(iii). the 12-noded mapped infinite element for representing far field boundary, and  

(iv). the 16-noded joint element for discontinuities in displacements and shear strains. 

B. Nonlinear techniques: 

 Incremental (tangent stiffness) approach with the stable implicit ( 1θ2
1 ≤< ) or  

explicit (θ = 0) time integration algorithm. Use of a non-symmetric frontal method.  

Options for large deformation analysis with Updated Lagrangian formulation. 

            C.  Rock mass models: 

 Orthotropic elasticity; elastic joint interface (2-D); brittle/strain softening fail-

ure or yield with Mohr-Coulomb, Drucker-Prager or Hoek-Brown 3-D surface; asso-
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ciated/nonassociated flow rule with Drucker-Prager or the extended Hoek-Brown flow 

function. Options for two other failure modes: tensile crack and fracture along the plane 

of weakness in the orthotropic case. 

D. Types of loading: 

Point loads; edge loads, distributed surface loads (restricted to Normal Loads only), 

body forces; gravity and other in situ stress fields; incremental loading; two ways of 

simulating excavation (opposite nodal forces or reduction of stress and stiffness) which 

can be combined without any restriction. 

E. Boundary conditions: 

Infinite elements to model far field boundary conditions; prescribed values of dis-

placement or pressure at the boundary element nodes, edges or surfaces. 

F. Sliding between two rock strata 

2D joint elements to tackle the problems of discontinuous displacements, stresses 

and strains between two rock strata, and in the plane of weakness for orthotropic rock 

masses. 

§2. Input data file formats and variable names 

 The 3-D version of the program FESTER is based on its 2-D version and hence 

it can also be used to solve 2-D and axisymmetric problems. The structure of the input 

data file is the same as in the 2-D case which is described in Reed and Lavender [34] and 

Naylor [20]. In this section, we give the detailed order and formats of the input data file 

since the file can be prepared by hand, in case that a 3-D preprocessor for FESTER is 

not available. In the following descriptions of the formats and the variables to be read,  

the order and their names in parenthesis, i.e., G2, B1 and P2 etc., of the "Data Cards" 

are also listed. It should be pointed out that the variable LCARD in the following list is 

a "flag" which is used to terminate a read loop (i. e., to terminate a data subset) when 

its value is 1. Otherwise, it should be set to 0 or left blank. An example input file will 
be given in §9. 

2.1. Input data file formats 

In an input file, there are at most twenty Data subsets which are to be read into 

FESTER described by twenty Read format Statements. There may be fewer, depending 
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on loading processes, boundary conditions and default values etc. for the particular
problem to be analysed. The formats and variables to be input to FESTER are listed 
in the following table. 
 
 

A typical input data file 
No. Type Input Format Variables Read 
1 TITLE [I1,A50] IPOST,TITLE 
2 C1 [12I5] NPOIN,NELEM,NFIXV,MSTYP,NDIME, 
   NODEM,NDOFM,NGAUS,NSTRE,NLAPS, 
   NEXCA,NCALL 
3 C2 [12I5] NPROS,NPROP,NOUT,NBDRY,NGRIS, 
   LDTYP,NINCS,NITER,NBSET,NPSET, 
   spare,spare 
4 C3 [8E10.3] TOLER,DTINT,TAUFT,FTIME,YDMIN, 
   ALLOW,TIMEX,FLOWC 
5 G1 [11,14,13I5] LCARD,NSIDE,LNUM,LNODS(LNUM,I), 
   (I=1,NNODE) 
6 G2 [11,14,15,3E10.3] LCARD,NDOFN,N,COORD(N,I), 
   (I=1,3) 
7 G3 [11,19,1415] LCARD,KODE,NO.-of-Node 
8 LM [11,I4,15I5] LCARD,LMTD,LMT, 
   NO.-of-Element 
9 M1 [11,14,15I5] LCARD,NSET,NO.-&- 
   Value-of-Componants 

10 M2 [11,14,12,13,1415] LCARD,NSETD,LN,NSET, 
   NO.-of-Elements 

11 W [11,14,13I5] LCARD,NO.-of-Nodes 
12 S1 [3E10.3] YDATS,UNWTS,HVRAT 
13 S2 [6E10.3] XSTRO,YSTRO,TSTRO,ZSTRO,XZSTR, 
   YZSTR 

14 LD [11,14,15,6(11,F9.3)] LCARD,LD,NODE,NO,-&- 
   Value-of-Degree-of-Freedom 

15 B1 [11,14,3X.I5,6I2,6F10.3] LCARD,NSET,NO.-&- 
   Value-of-Degree-of-Freedom 

16 B2 [11,14,12,13,14I5] LCARD,NSETD,LN,NSET, 
   No.-&-Value-of-Degree-of-Freedom 

17 P1 [11,14,3X,6I2,6F10.3] LCARD,NSET,NO-&- 
   Value-of-Degree-of-Freedom 

18 P2 [11,14,15,8(I3,I2)] LCARD,NSET,No-&- 
   Value-of-Degree-of-Freedom 

19 AD [I1,F9.3,20I2] LCARD,NO.-of-Increaments 
20 EX [I1,I4,I5,F10.3] LCARD,NO.-of-Increament, 
   No.-of-Material- 
   Property-Set,Excavation-Factor 
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Remark.  In preparing aa input file, one should ensure that the Data Cardsets are in 
the right order, and some of them may be omitted. The following list gives the details 

about the "Optional Data sets". 

 (1). The W Cards (set 11), only needed if NBDRY > 0.  

(2). The SI Cards (set 12), only needed if NGRIS I ≥ 1.  

(3). The S2 Cards (set 13), only needed if NGRIS = 2.  

(4). The B1 Cards (set 15), only needed if NBSET ≥ 0.  

(5). The B2 Cards (set 16), only needed if NBSET ≥ 0.  

(6). The P1 Cards (set 17), only needed if NPSET ≥ 0.  

(7). The P2 Cards (set 18), only needed if NPSET ≥ 0. 

2.2. Descriptions of the variable names 

Now we give a brief description of some important variable names used in FESTER 

with their default values. The variable names are the same as that in the 2-D version but 

their default values may be different. The default value in the 3D version is the number in 

the parentheses following the variable. More detailed descriptions of the variable names 

and their default values for 2-D FESTER can be obtained in [13,20,21]. 

2.2.1. The mesh and load variables 

1. NPOIN(-):   No. of Nodes in mesh. 

2. NELEM(-):   No. of Elements in mesh. 

3. NFIXV(-):    No. of Fixed degrees of freedom in mesh. 

4. MSTYP(3):    Problem type, set to 3 for 3D problems. 

5. NDIME(3):   No. of Dimensions (also set to 3). 

6. NODEM(20):    Max. No. of  nodes in an element. 

7. NDOFM(3):    Max. No. of degrees of freedom per node. 

8. NGAUS(2):    Order of Gauss quadrature rule. 

9. NSTRE(6):   No. of stress components. 

10. NLAPS(l):    Type of analysis:  1 =: for small displacement analysis, 2 =: for 
                            large displacement analysis. 
11. NEXCA(-):    Type of loading; 1 = Nodal Loads, 2 = Stress Removal and 3 = 

Excavation. 
13. NPROS(-):  No. of material property sets. 

14. NPROP(19):    Max. No. of material property components in a sets. 
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16. NBDRY(-):   No. of nodes around the tunnel Boundary. 

17. NGRIS(0):   Type of in situ stress: 0 =: none, 1 =: gravity only and 2 =: gravity 

           & uniform stress. 

        19. NINCS(1):   No. of load increments. 

        20. NITER(1):   Max. No. of timesteps per load increment. 

        21. NBSET(0):   No. of body force sets. 

22.  NPSET(0):    No. of surface traction load sets. 

         These variables are stored in an array NCONS of length 24 and the integers in front 

of the variables listed above indicate their positions in the array. For example, NCONS(8) 

= NGAUS. 

2.2.2. The computing control parameters (real) 

      1.   TOLER(0.10):    Tolerance control parameter. 

      2.   DTINT(0.0l):    Initial timestep ∆t0 . 

3. TAUFT(0.0l):    Timestep size control parameter τ. 

4. FTIME(1.20):    Timestep size control parameter Ft. 

5. YDMIN(0.00):   Yield surface tolerance parameter Ymin. 

6. ALLOW(10.0):   Max. timestep control parameter. 

7. TIMEX(0.00):    Time integration parameter θ, θ = 0 explicit, 0 < θ ≤ 1 implicit. 

8. FLOWC(0.00):   The visco-plasticity flow constant c. 

       These variables are stored in an array CMISC of length 8 and the integers in front of 

the variables listed above indicate their positions in the array. For example, CMISC(2) 
= DTINT. The physical meaning of them are given in [34]. 

2.2.3. Some other variables 

       1. LTYPE(-):    The element type array. In the 3-D version program:  

                          LTYPE(l) = 62: The ID quadratic joint element; 

  LTYPE(2) = 31: The linear (2D) element; 

  LTYPE(3) = 33: The linear (2D) element; 

  LTYPE(4) = 44: The linear (2D) element; 

  LTYPE(5) = 63: The quadratic triangular (2D) element; 

  LTYPE(6) = 54: The infinite quadratic (2D) element; 

  LTYPE(7) = 84: The 8-noded quadratic (2D) element;
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 LTYPE(8) = 86: The 8-noded brick (linear,3D) element;  

 LTYPE(9) = 206: The 20-noded brick (quadratic,3D) element; 

 LTYPE(I0) = 162: The 2D quadratic joint element;  

 LTYPE(11) = 126: The 3D infinite (quadratic) element (Type a);  

 LTYPE(12}= 34: The doubly infinite (2D) element; 

 LTYPE(13) = 76: The 3D infinite (quadratic) element (Type b); 

 LTYPE(14) = 46: The 3D infinite (quadratic) element (Type c). 

2. LMT(2):   The Material type indicator: 

 LMT = 1: Linear elastic structure (no in situ stress); 

 LMT = 2: Isotropic linear elastic material;  

 LMT = 3: Orthotropic linear elastic material; 

 LMT = 4: Isotropic Mohr-Coulomb linear elasto-visco-plastic material; 

 LMT = 5: Isotropic Hoek-Brown linear elasto-visco-plastic material;  

 LMT = 6: Isotropic Mohr-Coulomb linear elasto-visco-plastic material; 

 LMT = 7: Isotropic Hoek-Brown linear elasto-visco-plastic material; 

 LMT = 8: Isotropic Drucker-Prager linear elasto-visco-plastic material; 

 LMT = 9: Elastic joint element material. 

3. YDATS(-):    The depth below the surface Z = 0 mesh datum plane. 

4. UNWTS(-):    The unit weight of the material (rock). 

5. HVRAT(l):    The lateral stress ratio K0 [27,34]. 

6. PROPS(-):    The material sets and their property parameters which is explained 

      in details in [27,34]. 

7. SCONV(-l.0):     The Sign Convention for both stresses and strains:  SCONV 

= -1.0 means that compression stresses are defined as positive 

values. 

The meaning of some other variable names employed in the program FESTER can 

be obtained in [13,20,21]. 

§3. Principal stress and stress invariants analyses 

In this section, we derive the formulae for the computation of stress invariants and 

their first and second derivatives which are used in the program FESTER. Some other
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related formulae are also provided. 

 First, the stress tensor σ  is described as a vector of length six: 

      ( )tyzxzxyzyx ,,,,,: τττσσσσ =                   (3 ,1} 

and the strain tensor ∈  is defined similarly, which will be given explicitly in §5. The prin- 

cipal stresses and strains are denoted by ( )321321 ,,, σσσσσσ ≥≥   and ≥∈∈∈∈ 1321 (,,,  

)32 εε ≥  respectively. Then the stress invariants I1,I2,I3 and the deviatoric stress in-
variants J2 and J3 are given by [8,18,29]: 
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Hence, the characteristic equation (stress) is thus given by 

  (3.3) .0III 32
2

1
3 =−−− σσσ

For convenience, we introduce another invariant, an angle θ , which is equivalent to 
the Lode Angle [21]: 
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It should be stressed that this θ  is different from the OHθ  defined in Owen & Hinton [21]. 

They are related by: 

 θ  = OHθ + .6
π  (3.5) 

Then, the principal stresses can be written in a simple formula in terms of these invariants 
[21,34]: 
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From these equations and by use of the chain rule, we can obtain the partial deriva-
tives of these invariants and principal stresses 3,2,1},{ =iiσ  with respect to the stress 
components ,......,, yx σσ , which will be used in the yield and crack criteria and the flow 
rules: 
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From equations in (3.2), the first derivatives of the invariants, with respect to the 

stress vector 
−
σ , could be derived: 
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In the implicit visco-plastic algorithm used in FESTER the second derivatives 
(Hessian Matrices) of invariants 322 ,, JJI  and θ   are needed to calculate the matrix 
H. Hence, for completeness, we write out the formulae for the computation of these 
values for the Drucker-Prager (DP) [21,40] and the Hoek-Brown (HB) [14,22,34] plastic 
potentials which are defined by the following equations: 
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where α and m' the empirical parameter and the dilation parameter respectively. From 
(3.8), we can obtain 
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where Mconst is a constant matrix 
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The Hessian matrices of I3, J3 and θ are given by 
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For the Drucker-Prager plastic potential, the flow vector bDP and its derivatives VDP  are 
given by 
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For the Hoek-Brown plastic potential plastic potential, the flow vector bHB and its derivatives VHB  are 
given by 
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 Finally, for computational purposes, we give the formulae of the Hessian matrices (second order 
derivatives with respect to the Cartesian stress components ,...}),{ yx σσ  of the principal stresses 

 These formulae come from (3.6) and (3.7) directly. .3,2,1},{ =iiσ
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All these invariants and their derivatives are programmed in the 3D version FES-
TER  s u b r o u t i n e  INVAR .  M o d i f i c a t i o n s  t o  o t h e r  r e l a t e d  s u b r o u t i n e s  a r e  a l s o  ma d e  
consistently. 
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§4. 2D joint element (surface contact) 

 

A 2D joint element (surface contact) is introduced in the 3D version of FESTER to simulate 

the sliding and fracturing (with or without gaps) of rock movement during tunnel excavation. This 

joint element is similar to the 1D/2D/3D joint element described in [2,12,28,35] in theory. 

However, it has zero thickness and allows opening. In FESTER the ID joint element is 

constructed from a pair of 3-noded bar elements; by contrast, the 2D-joint element consists of a pair 

of 8-noded quadratic is oparametric element5(see Figure 4.1). Hence a 2D joint element in FESTER 

has sixteen nodes. Other joint elements with more or less nodes can also be formulated similarly. 

 

4.1, Formulation of the 2D joint element-surface contact modelling 

 

The mathematical formulation of the (element) "stiffness matrix" and "B—matrix", 

(i .e. ,  the strain-displacement relation matrix) of the 16-noded joint element without 

opening,  (or  bonded element)  is  as  fol lows.  The opening problem wil l  be  discussed in  

the next subsection. For simplicity, we first  consider a special case of joints—the joint 

e lement  is  paral le l  to  the  x-y  plane during the process  of  deformation.  The general  

s l iding cases ,  in  which the joint  e lement  deforms arbi t rar i ly ,  wi l l  be  s tudied at  the  end 

of  this subsection. 

Firs t ,  we need some notat ion.  Let  d  := (u,v ,w) t  denote  the displacement  a t  any 
point  in  the  joint  e lement ,   be  the displacement  of  the  j - th  node,  j  = 1,2, . . . ,  16;  and 0d j

∆s  denote  the  re la t ive displacement  (s l ip)  a t  any point  on the upper  s ide of  the joint  

e lement ,  and ∆s0
i  denote  the s l ip  a t  the  i - th  node on the Upper  Side of  the e lement  (see 

Figure 4 .1) ,  i  = 1,2, . . . ,8 .  That  is ,  

 ∆  (4.0) 000 dd:s niii +−=

The functions, ,8,...,2,1, =iiφ  are the (isoparametric) shape functions of the (2D) 8- noded 

quadratic elements (In general 2D joint elements, we shall use 2n to denote the number nodes in 

the element. Hence, in our special case, n = 8.). Furthermore, we assume, just as in finite 

element methods that 

  (4.1) ∑
=

==
n

i
ii SNss

1
0

0 ,: ΔΔΔ φ

where, I is the 3×3 identity matrix and 

 
 ,  (4.2) ),...,,(: 3

21
n

n RN ∈= ΙΙΙ φφφ
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Figure 4.1. A 2D joint element parallel to the x-y plane. 

and 

      (4.3) .),...,,(: 300
2

0
10

nt
n RSSSS ∈= ΔΔΔΔ

Then the virtual External Work, extEδ  is given by [2,12]: 

           (4.4) P
t

ext SE ΔΔ 0δδ =

where ∆p is the Nodal Force vector of length 3n. While the Virtual Strain Energy (Shear 

Work), δEshr, is given by [2,12,28,35]: 

           (4.5) ,st2 ∫
Ω

− ΩΔδτ=δ daEshr

where, −τ  is the stress vector in the joint element (the contact surface). Here, −τ  := ( τ x, τ y, τ xy)t 

∈   R3, since other stress components of −τ   are definitely zeros. The contact region is denoted by Ω and 

α is a material constant. By assuming the following stress-slip relations, which comes from experiments 

[2,12,28,35]: 

−τ   = G∆s,     G  ,    (4.6) ,33×∈ R

for  some diagonal  matr ix  G = diag(Ks x ,  Ks y ,  Kn z ) ,  here Ks x  and Ks y  are  the  e las t ic  

( fr ic t ion)  modul i  in  the  x and y direct ions (or  in  general ,  two direct ions in  the tangent  

p lane)  (K s x  and  K s y  a re  assumed  to  have  the  same  va lue  in  the  p rogram FESTER)  and  
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Kn z is the normal elastic modulus of the joint element (Kn z is set to be 102 0 in FESTER 

for convenience, the details of these values will  be discussed in the next subsection), then 

we have: 
  ∫ −=

Ω
ΩΔsdaE t

shr δτδ 2

  ∫=
Ω

ΩΔΔ sdGsa tδ2

 ( ) .SGNNS 0
t

0
2 ΔΩΔδ= ∫Ω da t   (4.7) 

From the Virtual  Work Principle:δEs h r  = δEe x t ,  we have,  in  the s ta te  of  equi l ib-  

r ium: 
( ) ,SKSGNNa 00

2
P Δ≡ΔΩ=Δ ∫Ω sol

t d  (4.8) 

 

where, Ksol is a kind of element stiffness matrix defined by 
nnt

sol d 33RGNN:K ×

Ω
∈Ω= ∫  (4.9) 

 

Now,  l e t   deno te  the  vec to r  o f  d i sp lacements  a t  the  s ix teen  nodes  (2n )  nnRD 66
0

×∈

of  the joint  e lement ,  then we can easi ly  f ind that  there  is  a  di f ference matrix  nn 63 ×Z R∈  

such  tha t  (4 .0 )  can  be  wr i t t en  

∆S0 ≡ ZD0, (4.10) 

 

w h e r e ,  t h e  m a t r i x  Z  i s  c h a r a c t e r i z e d  b y  Z 3 i + 1 , 3 i + 1  =  1 , Z 3 i + 1 , 3 n + 3 i + 1 , = - 1 0≥∀i  

a n d  the  o ther  e lements  = 0.  Therefore ,  we can obtain the fol lowing Force-Disp lacement  

re la t ion  fo r  the  jo in t  e l ement :  

 

∆p =Ksol ZD0. (4.11) 

 

However, we can formulate the δEe x t   in the following way: 

 
,PDpS 00

tt
extE δ≡Δδ=δ  (4.12) 

 
where ,   i s  the  nodal  force  vec tor  a t  the  s ix teen  nodes  (2n )  o f  the  jo in t  e lement .  n6Rp∈

Combining  th i s  wi th  (4 .10) ,  one  obta ins  

 

p = Zt ∆p. (4.13) 
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From equations (4.8),  (4.10) and (4.13), the following Nodal Force—Nodal Displace-
ment relation can be derived: 
 
 p = Zt KsolZD0 ≡ Kjnt Do, (4.14) 
 
with the stif fness matrix Kj n t  of the joint element given by 
 
 Kjnt := Zt KsolZ. (4.15) 
 
Furthermore, we can also form the B-matrix, B j n t ,  and the D-matrix, D j n t ,  for the joint 
element: 
 BBjnt = NZ (4.16) 
 ( ),,...,,,,...,, 2121 ΙΙΙΙΙΙ nn φφφφφφ −−−=  

and 

  (4.17) .
K00
0K0
00K

:

nz

Sy

SX

jnt
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≡= GD

 
Therefore, the stiffness matrix for the joint element can also be written in the following 
form: 
  (4.18) ∫= Ω

.Ωd: jntjnt
t
jntjnt BDBK

 In general,  we can also formulate in a similar way that the B-matrix and D-matrix 
for 2D joint elements in space (cf.  Figure 4.2) is given by: 

  (4.19) ,),( tt
jnt NZQNNQB =−=

and 

  (4.20) .
K00
0K0
00K

:

ns

2st

1st

jnt
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=D

 

where,  and  are the elastic (friction) moduli in two orthogonal directions in the 
1stK

2stK

tangent  p lane ,  and  K n z  i s  e las t ic  modulus  in  the  normal  d i rec t ion  of  the  jo in t  e lement .  
For  isotropic materials,  we have 
 
 .,,

211 nznssystszst KKKKKK ===  (4.21) 

 
This  i s  assumed in  FESTER for  convenience .  More  about  the  D-mat r ix  wi l l  be  g iven  
la te r .  
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The matrix Q  in (4.19) is an orthogonal (rotation) matrix that transforms the orig-
ina l  coord ina tes  sys tem xyz  to  a  ca r t es ian  coord ina tes  sys tem x 'y ' z '  with  the  new z '  

ax i s  in  the direction of the surface normal at that point (i .e. ,  the Frenet frame). More 
explicitly, the rotation matrix Q  is given by: 

Q:=( q1,q2,q3). (4.22) 

The vector q3  is the (unit) normal vector of the joint element surface at the point (x, y, z) 
(local coordinates )( ζηξ ,, ) and q1  and q2  are (unit) vectors in the tangent plane of the 
element:     

        q1 := v4 × q3,

  q2 := q1 × q3. (4.23) 

The vector v4  is defined as either (1,0,0) t  or (0,1,0) t ,  which depends on the normal 
direction of the contact surface at that point.  More explicitly, 
 

  (4.24) 
⎩
⎨
⎧

=
≠= ,0,0,1vif,0,1,0

,0,0,1vif,0,0,1
t

1
t

t
1

t

)()(
)()(

4v

where 

 t

t

η
z,

η
y,

η
x:

,
ξ
z,

ξ
y,

ξ
x:
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⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

=

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

=

2

1

v

v
 (4.25) 

 
and 

 .
vv
vv:q

21

21
3 ×

×
=  (4.26) 

The element stiffness matrix, K j n t ,  is stil l  given by (4.18) together with the B-matrix 
and D-matrix given by (4.19) and (4.20). 

In formula (4.26), the vector q3 is the unit normal vector of the joint surface. In 
general,  the vector is unique at any point on the joint element so that the vectors  v1  and 
v2  cannot vanish at any point.  Hence, (2.26) is always meaningful.  

Remark 4.1. Although the B-matrix and stiffness matrix for 16-noded 2D-joint elements 
are formulated here, the results obtained in this section could be generalised to other 2D 
joint elements. For example, by changing the node number n  and the shape functions 
{ iφ }, i  = 1,2, . . . ,n ,  then its corresponding stiffness matrix and B-matrix are given by 
(4.18) and (4.16) respectively. 

Remark 4.2.  In  FESTER the  1D and 2D joint  e lements  are  t reated as  special  2D and 
3D elements  respectively. Since there is no extra node introduced in the mesh, that is,
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no node in the mesh belongs to a joint element only, the global stiffness matrix can be 

assembled from element stiffness matrices directly. Hence, the displacement, vector can 

be obtained by solving the system of equations of equilibrium. 

 
 

Figure 4.2. A general 2D joint element in the x-y-z system. 

4.2. Gaps in joint elements and control parameters 

In this subsection, we discuss another characteristic of joint elements: convergence 

and separation. This property of joint elements could be used to simulate discontinuities 

in rock masses and other materials.  As in Beer's formulation for general joint (shell) 

elements [2],  i t  can be shown that the B-matrix and the element stiffness matrix for the 

2D joint element are stil l  given by (4.16) (or (4.19) in general) and (4.18) respectively. 

This can be derived by the standard procedure of minimising the total potential energy 

[2].  Hence, we only state here some of the parameters used in dealing with joint elements 

and their physical background..  

 

A. D-matrix for joint elements: Djnt

 

The matrix Dj n t in (4.20) characterises the sliding and separation/convergence prop-

erties of joint elements. Its diagonal elements have a very clear physical explanation. 

1stK and  are the elastic (friction) moduli in two orthogonal directions in the tan-
2stK
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gent  plane of  the contact  point ,  and Kn z  i s  e las t ic  modulus  in  the normal  direct ion of  
the joint  e lement  ( the convergence and separat ion control) .  For  isotropic  mater ia ls ,  we 
have,  compared with (4 .17):  

.
21 systsxst KKKK ===       (4.27) 

The actual  values  of  these elas t ic  muduli  depend on the mater ia l .  This  special  form of  
D-matrix is a simplification (linearisation) of the stress-strain relation in joint e lements .   
In  fact ,  the  re la t ions between the shear  s t resses  and the s l ips  are  qui te  complicated [12]  
and we wil l  not  discuss  i t  fur ther .  

B. The convergence /separation control parameter: Kns

A convergence and separation option of the 2D joint element is provided by the 
control  parameter :  Kn s .  Here,  convergence means that  the two s ides  of  the element  
moves closer  to  each other  s ince i t  can be t reated as  a  thin shel l  e lement  [2]  with zero 
thickness while separation just means that they move further away from each other. This 
type of  e lement  can be used to  model  the deformation of  the joining of  two rock s t ra ta  
in  the  fo l lowing  two  ways .  One  i s  a  "convergence"  mode l l ing  in  FESTER,  ,:K ns ∞=

Kn s  10=: 2 0),  i .e. ,  the two rock strata remain in contact during the process of deformation, 
which is quite restrictive to model the natural rock contact problem. The other is a 
"separation" modelling (0 ≤  Kn s < ∞) that is,  the two rock strata can move arbitrarily, 
which is a natural modelling of rock joint deformation in practice. The latter is more 
difficult  to be applied in practice than the first  one since it  allows discontinuities to occur 
in a continuum which cannot be dealt with by ordinary Finite Element Methods (FEM). 
This  difficulty can be overcome by using some techniques such as  Discrete-Finite Element 
Methods (DFEM). Here, we will  not discuss DFEM further.  

In  the  p resen t  ve rs ion  o f  FESTER,  the  va lue  o f  the  pa ramete r  K n s  i s  r e s t r i c t ed  
to  ∞  only. That is,  Kn s = 102 0,  which means that the element is rigid in the normal 
direction and elastic in the tangent plane, neither further-convergence nor separation is 
allowed, only sliding can occur. Other values of Kn s will be considered and implemented 
soon. 

For completeness, we list  the physical meaning of other values of this control pa-
rameter Kn s.  

i .  0 ≤  Kn s <102 0: the element is an elastic 3D element, sliding, separation, and 
convergence (up to zero thickness of the element) as well,  are allowed. 

ii. Small  value of Kn s means that the element is an elastic 3D element, which is very soft in 

the normal direction, sliding, separation and convergence (up to zero thickness of
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the element) are allowed. 

 

i i i . Large value of  Kn s  means that  the  e lement  is  an elast ic  3D element ,  which is  very 
hard  in  the normal  direct ion,  s l iding,  separat ion and very small  convergence (up to  
zero thickness  of  the e lement)  are  a l lowed.  

 
C. Remarks 

Remark 4.3.  In  the present  version of  FESTER the 1D and 2D joint  e lements  always 
have zero thickness, so further convergence or separation cannot happen, only sliding in  
the joint  is  al lowed.  

Remark 4.4. To model the fracturing process of rock masses or other solid materials,  
more general 1D/2D joint elements (non-linear elastic or plastic) should be introduced 
which may allow "negative thickness" to model collisions between two elastic or elasto- 
plastic objects.  This generalisation of joint elements needs the theory and techniques of 
DFEM which will  not be discussed here. 

Remark 4 .5 .  In  FESTER,  the  D-matr ix  for  the  2D jo in t  e lement  g iven  by  (4 .20)  i s  
a ted  as  a  cons tan t  matr ix  dur ing  the  process  o f  de format ion  for  s impl ic i t y .  In  fac t ,  
D j n t  depends not only on the materials,  but also on the values of slips or shear stresses. 
That is,  for real materials,  the relations between shear (friction) stresses and slips are 
non-linear and quite complicated [12] . Hence, to increase accuracy, the non-linear terms 
in the stress-slip relations should be considered, which may lead to the introduction of 
non-zero off  diagonal elements in D j n t  This can be implemented easily to the 3D version  
of  FESTER.  

Remark 4.6.  For real materials,  there are at least four independent joint parameters: 
three elastic moduli of the joint ( ) ,  K

1stK stK
2 s n  and the strength values of the joint 

ncrtσ )( crtcrt(norma l  s t r eng th ,  wh i ch  may  be  neg l i g ib l e )  and  
2,1,

σσ  ( shear  s t r eng th , 

which depends on the angle of friction φ j n t  and the cohesion parameter Cj n t) [12] . There 
are many factors influencing these joint  parameters: the contact area, the perpendic-
ular aperture distribution and amplitude, the roughness of the two sides of the joint,  
inclination of apertures, cohesion due to interlocking etc. 
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§5. Stress-strain analysis, plane of weakness and cracking 

For each of the element types described in §2.2.3, one of the following material 
models is associated (joint element is restricted to model 9 only): 
 
1.  Linear elastic structure (no in situ stress in gravity loading); 

2. Isotropic linear elastic rock; 

3. Orthotropic linear elastic rock; 

4. Isotropic elastic-plastic rock with Mohr-Coulomb failure surface; 

5. Isotropic elastic-plastic rock with Hoek-Brown failure surface; 

6. Orthotropic elastic-plastic rock with Mohr-Coulomb failure surface; 

7. Orthotropic elastic-plastic rock with Hoek-Brown failure surface; 

8. Isotropic elastic-plastic rock with Drucker-Prager failure surface; 

9. Elastic joint (2D) interface in rock. 
 

The material property parameters (nineteen parameters in all)  required for these 
models are listed in table 2.1 in Pan & Reed (cf.  [27]).  

5.1. Stress-strain analysis of Orthotropic materials 

The constitutive law for orthotropic materials,  of which the orientation of the out-of-
plane-of-weakness-direction is in the z direction (see Figure 5.1), is given by the following 
relations [17,21,40]: 

,−− = εσ D       (5.1) 

where 

( )
( t

yzxzxyzyx
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Figure 5.1. An orthotropic material and its (ortho-)coodinate system. 

Here, E1 ,v1  are the Young's modulus and Poison's ratio in the plane of isotropy (which 
is parallel to the  x-y  plane) and E2 ,v2  ate the corresponding property parameters in the 
direction normal to the the plane (z direction), G2  is the shear modulus in the normal 
direction and the constant 

2

1: E
E

nC = .  I t  should be noticed that in the strain vector −ε  the 

shear strains yzxzxy γγγ ,,   are used, not  .,, yzxzxy εεε  They are related by 

    .2,2,2 yzyzxzxzxyxy εγεγεγ ===      (5.4) 

This will  be used in the formulation of strain energy and stress (strain) transformation 

For isotropic materials,  the constitutive law is also given by (5.1)—(5.3) with the 
property parameters satisfying 

    .
)1(2

,, 22121 v
EGGvvvEEE
+

======     (5.5) 

In this case, the material has only two property parameters,  the Young's modulus E and 
the Poisson's ratio v .  

 

For inclined orthotropic materials, i. e., inclined rock strata, the strain-displacement 
relation matrix, which is denoted by D' now, can be written in the following form [17,40]: 

D' = TDTt      (5.6) 

where T  is the strain transformation matrix   satisfying: 
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           (5.7) xyztortho
−− = εε Τ

i .e. ,  the  matrix T is a coordinates transformation matrix for strain tensors which is 

defined explicitly by 
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and the vectors  x ' :=  (l1 ,  l2 ,  l3  ),y' := (m1, m2, m3  )  and z'  := (n1, n2,  n3  ) ,  are the di- 

rect ions (uni t  vectors)  of  or thotropy in  the global  coordinates  system (x,y ,z )  as  shown 
in Figure 5.2, and  and  denote the strain vectors  in the orthotropic ortho

−ε
xyz

−ε )( 6R∈

coordinate system (local) and the xyz coordinate system respectively. 

 
Figure 5.2. An orthotropic material in the x-y-z coodinate system. 

5.2. Plane of weakness in orthotropic materials and cracking 

The plane of weakness arises from the laminated nature of the rock stratum, created 

dur ing  sed imenta t ion  [3 ,4 ,6] .  In  the  3D case ,  the  i so t ropic  p lane  in  the  rock  mass  i s ,  

in  genera l ,  spanned  by  two or thogonal  un i t  vec tors ,  namely  x ' :=  ( l 1 ,  l 2 ,  l 3  )  and  y '  :=  
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(m1,  m2 ,  m3  ) .  For  convenience,  the  third  uni t  vector ,  z '  :=  (n1 ,  n2 ,  n3  ) ,  i s  in t roduced 
so that  x ' -y ' -z '  forms a  r ight-hand coordinate  system which is  cal led the or thotropic  
coordinate  system.  From the above formulat ion in  the previous sub-sect ion,  we can 
easily obtain the normal and shear stresses along the plane of weakness (the x'-y'  plane) :  
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             (5.9) 

Hence the resul tant  shear  s t ress  rstτ  and the normal  s t ress  on  on the plane of  weakness  

are  given by 
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We now consider the circumstances in which sliding occurs along the plane of weak-
ness. From the theory of limiting friction [6,12,28,34], sliding occurs if the maximum 
shear stress rstτ   in the plane satisfies the Mohr-Coulom-criterion: 

jjnrst cφtan +σ≥τ )(       (5.11) 

where jφ  is the angle of friction and Cj  is the cohesion parameter associated with the 

joining.  Another  cr i ter ion is  that  the  rock cannot  support  a  tensi le  s t ress  across  the 
joints ,  i .  e. ,  the rock will  break if σn < 0. These formulations are used in FESTER to 
analyse orthotropic materials and joint element sliding. Thus, two more yield functions, 
and their corresponding flow rules as well,  are introduced in FESTER to deal with the 
plane of weakness. The no-slip criterion has yield function )(1 −σF  and plastic potential 

)(1 −σQ  defined by 

    )(:)(
)(:)(

1

1
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ψtanQ
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στσ
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−

−      (5.12) 

where  is the angle of dilation. The no-tension criterion has yield function iψ )(2 −σF  and 

plastic potential )(2 −σQ  defined as 

     .QF nσσσ −== − :)()( 22      (5.13) 

The conventional flow rule is stil l  used in both no-slip and no-tension cases, i .  e. ,  
     

2,1,
)(

)( =
∂

∂
+><=

−

−

− i
Q

F
i

ij
i

p σ

σ
γευ Φ     (5.14) 
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where  i s  the  f luidi ty  parameter  for  the  joining and the funct ion notat ion < x >+ is  jγ

the  s tandard t runcated funct ion:  

          (5-15) 
⎩
⎨
⎧

<
≥

=+><
.0,0
,0,

:
x
xx

x

There are in all  four independent yield criteria used in FESTER.  One of them is 
used for general rock masses which may be denned as isotropic rock while another two 
are designed for the test on the plane of weakness. In FESTER,  the rock cracks on the 
plane of weakness if either of these two flow rules in (5.12) and (5.13) become active. This 
cracking process  is  independent  of  the the plas t ic  yie ld  of  the  plas t ic  rock mass .  That  
is ,  a t  a  given Gauss  point ,  the  rock may have been cracked but  not  yie lded plast ical ly ,  
or  vice  versa ,  or  nei ther ,  or  both.  The las t  yie ld  cr i ter ion,  for  " isotropic  rock masses" ,  
used in  FESTER  to  model  real is t ic  rock behaviour  and to  cure  the instabi l i ty  of  the  
numerical  resul ts  that  may ar ise  during computat ions  is  the  l imited- tensi le  yie ld  rule ,  
wi th  i ts  plas t ic  potent ia l  (associated f low),  given by 

   tententententen FFQF =−== −− )(,:)()( min Φσσσσ     (5.16) 

where tenσ  is  a prescribed small tensile strength (negative value) and the fluidity param-
eter   is the same as for the plastic yield rules .  tenγ jγ
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§6. 3D Shape and mapping functions 

 
Five types  of  3D elements  and a  doubly inf ini te  2D element  are  designed in  the 

3D version of  FESTER.  They are  the 8-noded l inear  br ick element ,  the  20-noded 
quadra t i c  b r i ck  e lement ,  the  12-noded  quadra t i c  in f in i t e  b r i ck  e lement  (Type  a ) ,  the  
7-noded quadratic doubly infinite brick element (Type b),  the 4-noded quadratic inf ini te  
corner  br ick element  (Type c)  and the 3-noded quadrat ic  doubly inf ini te  2D element .  

6.1. Shape functions of 3D finite elements 

The shape funct ions,  with  local  coordinates  (s , t ,υ )  ∈[-1,1]3  and the numbering of  
the nodes shown in Figure 6.1, for the 8-noded isoparametric brick elements (tri-l inear)  
are  as  fol lows:  
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     (6.1) 

 
The shape functions, with local coordinates (s,t ,υ )  and the numbering of the nodes 

shown in Figure 6.2, for the 20-noded isoparametric brick elements (tri-quadratic) are as 
follows: 
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6.2. Shape and mapping functions of 2D and 3D infinite elements 

Using the same notation as in §6.1, the shape functions {φ i} of the 12-noded infinite 

brick elements, with the numbering of the nodes shown in Figure 6.3, are given by: 
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and the corresponding mapping functions {ψ i} are given by: 
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The shape functions {φ i} of the 7-noded infinite brick elements (Type a),with the  

numbering of the nodes shown in Figure 6.4, are given by: 
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and the corresponding mapping functions {ψi} are given by: 
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The shape functions  {ψ i}  of the 4-noded infinite brick elements (Type 6), with the  

numbering of the nodes shown in Figure 6.5, are given by: 
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and the corresponding mapping functions {ψ i} are given by: 
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The shape functions {φ i} of the 3-noded doubly infinite elements (2D) with the 
numbering of the nodes shown in Figure 6.6, are given by: 
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and the corresponding mapping functions {ψ i} given by: 
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For completeness, we also give the shape and mapping functions of the 2D 5-noded 
singly infinite elements which are also used in FESTER (cf.  [34]).  The numbering of 
nodes of this element is shown in Figure 6.7. 
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The corresponding mapping functions {ψ i  } are given by: 
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Remark 6 .1 .  I t  can  be  seen  c lear ly  tha t  the  mapping  func t ions  {ψ i }  for  any  of  the  
above  inf in i te  e lements  do  not  form a  par t i t ion  of  un i ty .  That  i s  

 
∑ ∈∀≠

i
i tsts .),,(,1),,( 3Rυυψ       (6.13) 

 

This means that these mapping functions are dependent of the choice of the coordinate 
system, i .  e. ,  they are not coordinate-free. This is because our assumption that at infinity 
the displacements are zero. 

Remark 6.2. Other infinite 1D/2D/3D elements which extend to infinity in one/two/three 
direction(s) (cf.  [19]) may also be introduced into FESTER similarly. 
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Remark 6.3.  In the description of 2D elements, the notation for the local coordinate 
system used in [34] is (ξ ,η),  which is different from our notation (s,t) .  

Remark 6.4.  The order  of  nodes in  an element  must  be consis tent  with  the order  
showing on the s tandard elements  in  the Figures  6 .1-6.7.  Otherwise,  negat ive Jacobian 
determinants  may occur  which may cause incorrect  resul ts .  
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Figure 6.3 
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Figure 6.5 
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Figure 6.6 
 
 

 
 
 
 
 

Figure 6.7 
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§7. Large deformation analysis and its B—matrix 
 

In this section, we present a formulation of the large deformation analyses in the 3D 
version FESTER and the derivation of its B-matrix. 
 
7.1. Large deformation formulation 

 
The program is designed not only for small deformation analyses, but also for large 

deformation analyses. For the large deformation problems (option NLAPS=2  in the 
program), the second order terms, which are non-linear terms, are also considered in the 
strain-displacement relations in order to obtain better approximations. That is,  in this 
case, the strain-displacement relation is defined explicitly by [1,8,11,26]: 
 
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+
∂
∂

=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈
∈
∈

=∈

y
w

z
w

y
v

z
v

y
u

z
u

z
v

y
w

z
w

x
w

z
v

x
v

z
u

x
u

x
w

z
u

y
w

x
w

y
v

x
v

y
u

x
u

x
v

y
u

z
w

z
v

z
u

z
w

y
w

y
v

y
u

y
v

x
w

x
v

x
u

x
u

nnnnnnnn

nnnnnnnn

nnnnnnnn

nnnn

nnnn

nnnn

yz

xz

xy

z

y 2

2
1

2

2
1

2

2
1

2

2
1

2

2
1

2

2
1

2

2
1

2

2
1

2

2
1

}{

γ
γ
γ     (7.1) 

 
where  are  the s t ra in  components  and uyzxzxyzyx γ,γ,γ,,, ∈∈∈ n ,vn ,wn  are  the displace-  ments  

a t  the  t ime s tep t n  (an incremental  loading procedure is  used in  FESTER  for  nonl inear  
problems) .  

 
Since the nonl inear  terms are  introduced,  the  (e lement)  s t i ffness  matr ix ,  K ,  i s  thus  

composed of  two par ts ,  K l i n ,  and K n o n ,  i .  e . ,  K=  K l i n ,  +  K n o n ,  Here,  K l i n  i s  the  
contr ibut ion from the l inear  par t  and Kn o n  i s  that  from the nonl inear  par t .  In  FESTER,  
special  subrout ines ,  BMAT, MOD2, EMAT and GMAT, are  designed to  compute K l i n  

and K n o n  separately  and then sum them up to  obtain  the tota l  (nonl inear)  s t i ffness  
matr ix  K .  
 
7.2. B-matrix formulation 

 
To form the stiffness matrix for 3D stress-strain analyses, we first need to formulate 

the strain-displacement relations, i.e., the B-matrix. Suppose the shape functions are 
denoted by φ i , i=l,2 ,...,n and the nodal displacements by d i°,i = 1,2, ...,n,  then the 
d i sp lacement  d  a t  po in t  (x ,y ,  z )  in  the  g loba l  coord ina tes  sys te  ( (ξ ,η ,ζ )  in  the  loca l  
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coordinates system) is given by 
 

            (7.2) ∑
=
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ii .0dd

 
The strains at this point are given by a similar formula to (7.1). 

For small deformations, we can obtain, by suitable substitutions and arrangements: 
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where B l in , i is the linear part of the i-th strain matrix, which is given by 
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By defining: 

 
),BB(B:B 21 nlin,lin,lin,lin ,..., ,=      (7.5)  
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we have 
            (7.6) .dB 0

linlinε =−

Hence  the  g loba l  s t i f fness  mat r ix  ( l inear  par t )  K l i n  and  the  e lement  s t i f fness  mat r ix  
K l i n , i , j ,  i , j  =  1,2 ,  . . . ,n  are  g iven  by  
 

         (7.7) 
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where D is the strain-stress matrix (constitutive law (5.1)). 

 
For  la rge  deformat ions ,  the  formula t ion  i s  the  s imi la r  bu t  the  nonl inear  te rms  in  

(7 .1)  are  a lso considered in  the formulat ion of  . the  s t ra in  matr ices ,  that  is ,  B i  = B l i n , I  +  
B n o n , i ,  i  = 1 ,2 ,  . . . ,n ,  where  B l i n , i  i s  g iven  by  (7 .4)  and  B n o n , i  i s  the  non- l inear  par t  o f  
the  s t ra in  mat r ix .  More  expl ic i t ly ,  for  i  =  1 ,2 ,  . . . ,n ,  B n o n , i  i s  g iven  by  
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Hence ,  t he  i - th  to ta l  s t r a in  ma t r ix ,  B i    wh ich  i s  composed  o f  the  l inea r  pa r t  B l i n , i  and  
the  non- l inea r  pa r t  B n o n , i ,  i s  g iven  by :  
 
   Bi := BBlin,i  + Bnon,iB    i = 1,2,..., n.     (7.9) 
 
Similar to the formulation of linear strain-displacement relation, we have: 

 
B:=(BB1,B2B ,...,BBn),       (7.10) 

and 
 

.ε 0Bd=−        (7.11) 

 

Hence  the  to ta l  g loba l  s t i f fness  mat r ix  K  and  the  e lement  s t i f fness  mat r ix  K i , j , i , j  = 
1 ,2 ,  . . . ,n  a re  g iven  by  
 

          (7.12) 
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S ince  the  mat r i ces  B n o n , i ,  i  = 1 ,2 ,  . . . , n ,  depend  on  the  d i sp lacement  d° ,  (7 .11)  i s  
no t  a  l inear  re la t ion .  In  fac t ,  f rom (7 .8) ,  i t  i s  obvious  tha t   i s  a  quadra t ic  func t ion  of  −ε

d° .  
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§8. Other modifications to FESTER 
 

In this part,  we state some differences between the 3D version program of FESTER 
and its 2D version. 
 
8.1. Modifications to subroutines  

 

In addition to many minor changes to almost all the subroutines in the 2D version             
program to adapt it for 3D analyses, big changes were made to the following subroutines:             
TMAT, BMAT, INVAR, JNTB, MOD2, MODJ. 
 
A. Modifications to INVAR 

 

The subroutine INVAR can be used to compute the following values; their mathe-             
matical formulations are given in §3: 
 

a. Stress/strain Invariants I1, I2,  I3,  J2,  J3, θ;  

b. The first derivatives of these invariants; 

c.  The second derivatives of these invariants; 

d. The first/second derivatives of the principal stresses; 

e. The b and a vectors for the HB/DP flow rules and the tensile cracking rule. 

 
B. Modifications to BMAT 

 

The subroutine BMAT generates the linear part of the the B-matrix, B l i n ,  for both 
small and large deformation analyses in 3D problems. 
 
C. Modifications to JNTB 

 

The  subrout ine  JNTB produces  the  jo in t  e lement  B-mat r ix  B j n t  fo r  bo th  1D and  
2D jo in t  e lements .  In  the  2D case ,  i t  i s  res t r ic ted  to  the  16-noded  quadra t ic  e lement  
on ly .  
 
D. Modifications to MMAT and GMAT 

 

Subroutines MMAT and GMAT produce the non-linear part of the the B-matrix,             
BBnon, for both 2D and 3D large deformation analyses. That is, the strain matrix B is             
given by BlinB  + Bnon (cf. §7). 
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E. Modifications to   MODJ 

The subroutine MODJ produces the D-matrix for 1D and 2D joint elements. 

F. Modifications to MOD2 
 

The subrout ine MOD2 produces the D-matrix  for  2D and 3D orthotropic  mater ia ls .  
In  the 3D case,  the  or ientat ion of  the  or thotropic  mater ia l  should be provided by three 
uni t  vectors :  (V 1 ,  V 2 ,  V 3)  in  the reference coordinate  system,  with  the plane of  
weakness  in  the plane spanned by V 1  and v2 .  

G. Modifications to  SFR 

The subroutine SFR produces the shape functions of the 12 types of 2D and 3D 
elements which are described in §2.2.3. The subroutine MAPFUN are modified similarly 
to generate the three mapping functions of the 2D and 3D infinite elements. 

8.2. Other modifications 

There are some other changes to the 2D version program. The following list  may be 
helpful to understand the difference between the two versions. 

A. Input and output formats 

Since the brick elements are used in the 3D version, all  formats concerning the input 
and output of the elements,  stress and strain vectors,  loading, displacements etc.  are 
rewritten. The formats in the new version can also be used to analyse 2D and axial 
symmetr ic  problems with the same input  and output  formats  as  in  the 2D vers ion.  For  
3D problems, the stress output (at Gaussian points) is quite different from that produced 
by its 2D version. The stress outputs include: principal stresses σ1,  σ2,  σ3 their directions 
(pr incipal  di rect ions)  in  R3  :  α1 ,  α2 ,  α3  and the yield  indicator ,  which is  the  same as  in  
the 2D version. The displacement output differs only a li t t le:  the displacements are 
vectors in R3 instead of in R2.  

B. Common block 

A Common Block  i s  designed in  the 3D vers ion program. The block is  composed 
of  some constants  which are  f requent ly  used in  the program. The element  type array,  
LTYPE ,  i s  a lso s tored in  this  block.  
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C. New subroutines 

Two subrout ines  are  added to  the program: MULTAB and CROSS. The subrou-
t ine  MULTAB mult ipl ies  two matr ices  and CROSS i s  used to  f ind the Cross-Product  
of  two vectors .  

D. Gauss quadrature rule 

In order to increase the accuracy of computer results for 3D stress-strain analyses, 
the  order  of  the  Gaussian quadrature  which is  used to  obtain  the s t i ffness  matr ix  and 
the nodal forces, is set to 3 even if the input value NGAUS ≠  3.  In this way, some near-
singular cases can also be calculated by the program. Otherwise, there may be near-zero 
pivot values. However, for the 3D 8-noded, 20-noded and infinite elements the default 
number  of  Gaussian points  of  each element  a t  which the s t resses  and displacements  are  
to  be computed and output is 8. 
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§9. Numerical examples 

 

Four numerical examples are given in this section to demonstrate some of the math-
ematical models employed in the 3D version of FESTER.  They are the Large Displace-
ment ,  3D Inf ini te  Element  and 2D Joint  Element  models .  Two examples  are  a lso given 
to  show the program being used for solving practical problems. 

Example 9.1.  Large Displacement:  3D Cant i lever  Analyses .  The resul ts  are  shown in  
Figures  9 .1-9.4.  

Example 9.2.  Joint  Element:  Sl iding between two Rock Strata .  The resul ts  are  shown 
in  Figures  9 .5-9.8.  

Example 9.3.  A 3D stress  dis t r ibut ion in  a  rock s t ra tum. The resul ts  are  shown in  
Figures  9 .9-9.10.  
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§10. Conclusions 
 
 

In this report,  a detailed description of the nonlinear finite element program FES-  
TER for 3D analyses is presented. The package is specially designed for deep-level tunnel 
excavation analyses. The theory used to model the (3D) rock behaviour and numerical 
method used in the 3D program are the same as for the 2D analyses. However, many 
changes have been made to  sui t  3D appl icat ions.  The main features  of  the 3D analyses  
are  as follows: 

1. The mapped 3D infinite elements are used to simulate the far field deformation; 

2. The 2D joint elements (surface contact) are used to model the sliding (discontinuous 
 displacements,  stresses and strains) behaviour between two rock strata and in the 
 joints in rock masses; 

3. Special treatments are given (yield criterion, plastic potential,  sliding and cracking 
 rule) to the plane of weakness in 3D for orthotropic materials (rocks);  

4. 3D large displacement problems can also be analysed (the second order terms in the 
 strain-displacement relations have been taken into account in the program); 

5. A variety of (3D) yield criteria and plastic potentials (Mohr-Coulomb, Hoek—Brown 
 and Drucker-Prager) for both associated and non-associated flow rules are employed; 

6. Different techniques to simulate the tunnel excavation process are used in the program: 
 incremental loading, stress and stiffness reduction and any combination of these two 
 processes. 
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