2,733 research outputs found
A gamma- and X-ray detector for cryogenic, high magnetic field applications
As part of an experiment to measure the spectrum of photons emitted in
beta-decay of the free neutron, we developed and operated a detector consisting
of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs).
The detector was operated near liquid nitrogen temperature in the bore of a
superconducting magnet and registered photons with energies from 5 keV to 1000
keV. To enlarge the detection range, we also directly detected soft X-rays with
energies between 0.2 keV and 20 keV with three large area APDs. The
construction and operation of the detector is presented, as well as information
on operation of APDs at cryogenic temperatures
Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering
We discuss a technique for measuring a charged particle's momentum by means
of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time
projection chamber (LArTPC). This method does not require the full particle
ionization track to be contained inside of the detector volume as other track
momentum reconstruction methods do (range-based momentum reconstruction and
calorimetric momentum reconstruction). We motivate use of this technique,
describe a tuning of the underlying phenomenological formula, quantify its
performance on fully contained beam-neutrino-induced muon tracks both in
simulation and in data, and quantify its performance on exiting muon tracks in
simulation. Using simulation, we have shown that the standard Highland formula
should be re-tuned specifically for scattering in liquid argon, which
significantly improves the bias and resolution of the momentum measurement.
With the tuned formula, we find agreement between data and simulation for
contained tracks, with a small bias in the momentum reconstruction and with
resolutions that vary as a function of track length, improving from about 10%
for the shortest (one meter long) tracks to 5% for longer (several meter)
tracks. For simulated exiting muons with at least one meter of track contained,
we find a similarly small bias, and a resolution which is less than 15% for
muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first
estimate of the MCS momentum measurement capabilities of MicroBooNE for high
momentum exiting tracks
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
The low-noise operation of readout electronics in a liquid argon time
projection chamber (LArTPC) is critical to properly extract the distribution of
ionization charge deposited on the wire planes of the TPC, especially for the
induction planes. This paper describes the characteristics and mitigation of
the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase
LArTPC comprises two induction planes and one collection sense wire plane with
a total of 8256 wires. Current induced on each TPC wire is amplified and shaped
by custom low-power, low-noise ASICs immersed in the liquid argon. The
digitization of the signal waveform occurs outside the cryostat. Using data
from the first year of MicroBooNE operations, several excess noise sources in
the TPC were identified and mitigated. The residual equivalent noise charge
(ENC) after noise filtering varies with wire length and is found to be below
400 electrons for the longest wires (4.7 m). The response is consistent with
the cold electronics design expectations and is found to be stable with time
and uniform over the functioning channels. This noise level is significantly
lower than previous experiments utilizing warm front-end electronics.Comment: 36 pages, 20 figure
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
A Computational Approach for Designing Tiger Corridors in India
Wildlife corridors are components of landscapes, which facilitate the
movement of organisms and processes between intact habitat areas, and thus
provide connectivity between the habitats within the landscapes. Corridors are
thus regions within a given landscape that connect fragmented habitat patches
within the landscape. The major concern of designing corridors as a
conservation strategy is primarily to counter, and to the extent possible,
mitigate the effects of habitat fragmentation and loss on the biodiversity of
the landscape, as well as support continuance of land use for essential local
and global economic activities in the region of reference. In this paper, we
use game theory, graph theory, membership functions and chain code algorithm to
model and design a set of wildlife corridors with tiger (Panthera tigris
tigris) as the focal species. We identify the parameters which would affect the
tiger population in a landscape complex and using the presence of these
identified parameters construct a graph using the habitat patches supporting
tiger presence in the landscape complex as vertices and the possible paths
between them as edges. The passage of tigers through the possible paths have
been modelled as an Assurance game, with tigers as an individual player. The
game is played recursively as the tiger passes through each grid considered for
the model. The iteration causes the tiger to choose the most suitable path
signifying the emergence of adaptability. As a formal explanation of the game,
we model this interaction of tiger with the parameters as deterministic finite
automata, whose transition function is obtained by the game payoff.Comment: 12 pages, 5 figures, 6 tables, NGCT conference 201
Improved Limits on decays to invisible final states
We establish improved upper limits on branching fractions for B0 decays to
final States 10 where the decay products are purely invisible (i.e., no
observable final state particles) and for final states where the only visible
product is a photon. Within the Standard Model, these decays have branching
fractions that are below the current experimental sensitivity, but various
models of physics beyond the Standard Model predict significant contributions
for these channels. Using 471 million BB pairs collected at the Y(4S) resonance
by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National
Accelerator Laboratory, we establish upper limits at the 90% confidence level
of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the
branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Recommended from our members
Precise Measurement of the e+ e- --> pi+ pi- (gamma) Cross Section with the Initial-State Radiation Method at BABAR
A precise measurement of the cross section of the process
from threshold to an energy of 3GeV is obtained
with the initial-state radiation (ISR) method using 232fb of data
collected with the BaBar detector at center-of-mass energies near
10.6GeV. The ISR luminosity is determined from a study of the leptonic process
, which is found to agree with the
next-to-leading-order QED prediction to within 1.1%. The cross section for the
process is obtained with a systematic uncertainty
of 0.5% in the dominant resonance region. The leading-order hadronic
contribution to the muon magnetic anomaly calculated using the measured
cross section from threshold to 1.8GeV is .Comment: 58 pages, 56 figures, to be submitted to Phys. Rev.
Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-
In a sample of 471 million BB events collected with the BABAR detector at the
PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is
either e+e- or mu+mu-. We report results on partial branching fractions and
isospin asymmetries in seven bins of di-lepton mass-squared. We further present
CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi
resonance. We find no evidence for CP or lepton-flavor violation. The partial
branching fractions and isospin asymmetries are consistent with the Standard
Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.
- …
