243 research outputs found
Piezo-tolerant natural gas-producing microbes under accumulating pCO2
<p>Background: It is known that a part of natural gas is produced by biogenic degradation of organic matter, but the microbial pathways resulting in the formation of pressurized gas fields remain unknown. Autogeneration of biogas pressure of up to 20 bar has been shown to improve the quality of biogas to the level of biogenic natural gas as the fraction of CO2 decreased. Still, the pCO2 is higher compared to atmospheric digestion and this may affect the process in several ways. In this work, we investigated the effect of elevated pCO2 of up to 0.5 MPa on Gibbs free energy, microbial community composition and substrate utilization kinetics in autogenerative high-pressure digestion. Results: In this study, biogas pressure (up to 2.0 MPa) was batch-wise autogenerated for 268 days at 303 K in an 8-L bioreactor, resulting in a population dominated by archaeal Methanosaeta concilii, Methanobacterium formicicum and Mtb. beijingense and bacterial Kosmotoga-like (31% of total bacterial species), Propioniferax-like (25%) and Treponema-like (12%) species. Related microorganisms have also been detected in gas, oil and abandoned coal-bed reservoirs, where elevated pressure prevails. After 107 days autogeneration of biogas pressure up to 0.50 MPa of pCO2, propionate accumulated whilst CH4 formation declined. Alongside the Propioniferax-like organism, a putative propionate producer, increased in relative abundance in the period of propionate accumulation. Complementary experiments showed that specific propionate conversion rates decreased linearly from 30.3 mg g−1 VSadded day−1 by more than 90% to 2.2 mg g−1 VSadded day−1 after elevating pCO2 from 0.10 to 0.50 MPa. Neither thermodynamic limitations, especially due to elevated pH2, nor pH inhibition could sufficiently explain this phenomenon. The reduced propionate conversion could therefore be attributed to reversible CO2-toxicity. Conclusions: The results of this study suggest a generic role of the detected bacterial and archaeal species in biogenic methane formation at elevated pressure. The propionate conversion rate and subsequent methane production rate were inhibited by up to 90% by the accumulating pCO2 up to 0.5 MPa in the pressure reactor, which opens opportunities for steering carboxylate production using reversible CO2-toxicity in mixed-culture microbial electrosynthesis and fermentation.</p
Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes
We present designs for scalable quantum computers composed of qubits encoded
in aggregates of four or more Majorana zero modes, realized at the ends of
topological superconducting wire segments that are assembled into
superconducting islands with significant charging energy. Quantum information
can be manipulated according to a measurement-only protocol, which is
facilitated by tunable couplings between Majorana zero modes and nearby
semiconductor quantum dots. Our proposed architecture designs have the
following principal virtues: (1) the magnetic field can be aligned in the
direction of all of the topological superconducting wires since they are all
parallel; (2) topological -junctions are not used, obviating possible
difficulties in their fabrication and utilization; (3) quasiparticle poisoning
is abated by the charging energy; (4) Clifford operations are executed by a
relatively standard measurement: detection of corrections to quantum dot
energy, charge, or differential capacitance induced by quantum fluctuations;
(5) it is compatible with strategies for producing good approximate magic
states.Comment: 34 pages, 17 figures; v4: minor changes, final versio
Exploring concepts of health with male prisoners in three category-C English prisons
Lay understandings of health and illness have a well established track record and a plethora of research now exists which has examined these issues. However, there is a dearth of research which has examined the perspectives of those who are imprisoned. This paper attempts to address this research gap. The paper is timely given that calls have been made to examine lay perspectives in different geographical locations and a need to re-examine health promotion approaches in prison settings. Qualitative data from thirty-six male sentenced prisoners from three prisons in England were collected. The data was analysed in accordance with Attride-Stirling's (2001) thematic network approach. Although the men's perceptions of health were broadly similar to the general population, some interesting findings emerged which were directly related to prison life and its associated structures. These included access to the outdoors and time out of their prison cell, as well as maintaining relationships with family members through visits. The paper proposes that prisoners' lay views should be given higher priority given that prison health has traditionally been associated with medical treatment and the bio-medical paradigm more generally. It also suggests that in order to fulfil the World Health Organization's (WHO) vision of viewing prisons as health promoting settings, lay views should be recognised to shape future health promotion policy and practice
Covid-19 vaccine in prison: a not-to-be-missed opportunity to promote access to vaccination in adolescents
Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation
Since the discovery that anaerobic methanotrophic archaea (ANME) are involved in the anaerobic oxidation of methane coupled to sulfate reduction in marine sediments, different primers and probes specifically targeting the 16S rRNA gene of these archaea have been developed. Microbial investigation of the different ANME subtypes (ANME-1; ANME-2a, b, and c; and ANME-3) was mainly done in sediments where specific subtypes of ANME were highly enriched and methanogenic cell numbers were low. In different sediments with higher archaeal diversity and abundance, it is important that primers and probes targeting different ANME subtypes are very specific and do not detect other ANME subtypes or methanogens that are also present. In this study, primers and probes that were regularly used in AOM studies were tested in silico on coverage and specificity. Most of the previously developed primers and probes were not specific for the ANME subtypes, thereby not reflecting the actual ANME population in complex samples. Selected primers that showed good coverage and high specificity for the subclades ANME-1, ANME-2a/b, and ANME-2c were thoroughly validated using quantitative polymerase chain reaction (qPCR). From these qPCR tests, only certain combinations seemed suitable for selective amplification. After optimization of these primer sets, we obtained valid primer combinations for the selective detection and quantification of ANME-1, ANME-2a/b, and ANME-2c in samples where different ANME subtypes and possibly methanogens could be present. As a result of this work, we propose a standard workflow to facilitate selection of suitable primers for qPCR experiments on novel environmental samples.This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009). Research of PHATand AJMS is supported by the SIAM Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio
Testing the “Learning Journey” of MSW Students in a Rural Program
Using a quasi-experimental one-group, pretest–posttest design with non-random convenience sampling, the researchers assessed 61 advanced standing MSW students who matriculated at a rural intermountain Northwest school of social work. Changes in students\u27 knowledge and attitudes toward lesbian, gay, and bisexual (LGB) people were measured using subscales of the LGB-KASH scale and include knowledge of LGB history, religious conflict, internalized affirmation of LGB people and issues, hatred and violence toward LGB people, and knowledge and attitudes toward extension and exclusion of civil rights for LGB people. Completion of required, highly experiential bridge course content regarding LGB history and experience appears to be significant in reducing religious conflict, increasing knowledge of LGB issues, and enhancing internalized affirmation of LGB individuals
Moving prison health promotion along: Towards an integrative framework for action to develop health promotion and tackle the social determinants of health
The majority of prisoners are drawn from deprived circumstances with a range of health and social needs. The current focus within ‘prison health’ does not, and cannot, given its predominant medical model, adequately address the current health and well-being needs of offenders. Adopting a social model of health is more likely to address the wide range of health issues faced by offenders and thus lead to better rehabilitation outcomes. At the same time, broader action at governmental level is required to address the social determinants of health (poverty, unemployment and educational attainment) that marginalise populations and increase the likelihood of criminal activities. Within prison, there is more that can be done to promote prisoners’ health if a move away from a solely curative, medical model is facilitated, towards a preventive perspective designed to promote positive health. Here, we use the Ottawa Charter for health promotion to frame public health and health promotion within prisons and to set out a challenging agenda that would make health a priority for everyone, not just ‘health’ staff, within the prison setting. A series of outcomes under each of the five action areas of the Charter offers a plan of action, showing how each can improve health. We also go further than the Ottawa Charter, to comment on how the values of emancipatory health promotion need to permeate prison health discourse, along with the concept of salutogenesis
Methanogens, sulphate and heavy metals: a complex system
Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogasa renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria, SRB). This review gives an overview of previous research and pilot-scale studies that shed some light on the effects of sulphate and heavy metals on methanogenesis. Despite the numerous studies on this subject, comparison is not always possible due to differences in the experimental conditions used and parameters explained. An overview of the possible benefits of methanogens and SRB co-habitation is also covered. Small amounts of sulphide produced by SRB can precipitate with metals, neutralising the negative effects of sulphide accumulation and free heavy metals on methanogenesis. Knowledge on how to untangle and balance sulphate reduction and methanogenesis is crucial to take advantage of the potential for the utilisation of biogenic sulphide as a metal detoxification agent with minimal loss in methane production in anaerobic digesters.The research was financially supported by the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA agreement 289193
Ecology and application of haloalkaliphilic anaerobic microbial communities
Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided.This work was performed in the TTIW-
cooperation framework of Wetsus, European Centre of Excel-
lence for Sustainable Water Technology (www.wetsus.nl).
Wetsus is funded by the Dutch Ministry of Economic
Affairs, the European Union Regional Development Fund,
the Province of Fryslân, the City of Leeuwarden and the EZ/Kompas program of the“
Samenwerkingsverband Noord-Nederland”. The authors would like to thank the participants of
the research theme "Sulfur", namely Paqell, for fruitful discussions and financial suppor
Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601T
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.This research was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO), project number 08053, the graduate school WIMEK (Wageningen Institute for Environment and Climate Research, which is part of SENSE Research School for Socio-Economic and Natural Sciences of the Environment, www.wimek-new.wur.nl and www.sense.nl), SKB (Dutch Centre for Soil Quality Management and Knowledge Transfer, www.skbodem.nl) and the Consolider project CSD-2007-00055. The research was incorporated in the TRIAS (TRIpartite Approaches 469 toward Soil systems processes) program (http://www.nwo.nl/en/research-and-results/programmes/alw/trias-tripartite-approach-to-soil-system-processes/index. html). Flávia Talarico Saia was supported by a FAPESP (the State of São Paulo Research Foundation) scholarship (2006-01997/5). The work conducted by the DOE JGI is supported by the Office of Science of the United States Department of Energy under contract number DE-AC02-05CH11231. Alfons Stams acknowledges support by an ERC (European Research Counsil) advanced grant (project 323009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …
