43,685 research outputs found

    Precision polarimetry with real-time mitigation of optical-window birefringence

    Full text link
    Optical-window birefringence is frequently a major obstacle in experiments measuring changes in the polarization state of light traversing a sample under investigation. It can contribute a signal indistinguishable from that due to the sample and complicate the analysis. Here, we explore a method to measure and compensate for the birefringence of an optical window using the reflection from the last optical surface before the sample. We demonstrate that this arrangement can cancel out false signals due to the optical-window birefringence-induced ellipticity drift to about 1%, for the values of total ellipticity less than 0.25 rad

    A technique for constructing spectral reflectance curves from Viking lander camera multispectral data

    Get PDF
    A technique for evaluating the construction of spectral reflectance curves from multispectral data obtained with the Viking lander cameras is presented. The multispectral data is limited to 6 channels in the wave-length range 0.4 to 1.1 microns, and several of the channels suffer from appreciable out-of-band response. The technique represents the estimated reflectance curves as a linear combination of known basic functions with coefficients determined to minimize the error in the representation, and it permits all channels, with and without out-of-band response, to contribute equally valid information. The technique is evaluated for known spectral reflectance curves of 8 materials felt likely to be present on the Martian surface. The technique provides an essentially exact fit if the the reflectance curve has no pronounced maxima and minima. Even if the curve has pronounced maxima and minima, the fit is good and reveals the most dominant features. Since only 6 samples are available some short period features are lost. This loss is almost certainly due to undersampling rather than out-of-band channel response

    4D visualization of embryonic, structural crystallization by single-pulse microscopy

    Get PDF
    In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding

    D-brane orbiting NS5-branes

    Full text link
    We study real time dynamics of a Dp-brane orbiting a stack of NS5-branes. It is generally known that a BPS D-brane moving in the vicinity of NS5-branes becomes unstable due to the presence of tachyonic degree of freedom induced on the D-brane. Indeed, the D-brane necessarily falls into the fivebranes due to gravitational attraction and eventually collapses into a pressureless fluid. Such a decay of the D-brane is known to be closely related to the rolling tachyon problem. In this paper we show that in special cases the decay of D-brane caused by gravitational attraction can be avoided. Namely for certain values of energy and angular momentum the D-brane orbits around the fivebranes, maintaining certain distance from the fivebranes all the time, and the process of tachyon condensation is suppressed. We show that the tachyonic degree of freedom induced on such a D-brane really disappears and the brane returns to a stable D-brane.Comment: 12 pages, latex, added referenc

    Correlation Functions of Conserved Currents in N = 2 Superconformal Theory

    Get PDF
    Using a manifestly supersymmetric formalism, we determine the general structure of two- and three- point functions of the supercurrent and the flavour current of N = 2 superconformal field theories. We also express them in terms of N = 1 superfields and compare to the generic N = 1 correlation functions. A general discussion of the N = 2 supercurrent superfield and the multiplet of anomalies and their definition as derivatives with respect to the supergravity prepotentials is also included.Comment: 43 pages, latex, no figures, v.2: section 4.2 extende

    The Outer Shock of the Oxygen-Rich Supernova Remnant G292.0+1.8: Evidence for the Interaction with the Stellar Winds from its Massive Progenitor

    Full text link
    We study the outer-shock structure of the oxygen-rich supernova remnant G292.0+1.8, using a deep observation with the Chandra X-ray Observatory. We measure radial variations of the electron temperature and emission measure that we identify as the outer shock propagating into a medium with a radially decreasing density profile. The inferred ambient density structure is consistent with models for the circumstellar wind of a massive progenitor star rather than for a uniform interstellar medium. The estimated wind density n_H = 0.1 ~ 0.3 cm^-3) at the current outer radius (~7.7 pc) of the remnant is consistent with a slow wind from a red supergiant (RSG) star. The total mass of the wind is estimated to be ~ 15 - 40 solar mass (depending on the estimated density range), assuming that the wind extended down to near the surface of the progenitor. The overall kinematics of G292.0+1.8 are consistent with the remnant expanding through the RSG wind.Comment: 9 pages (2-column), 5 figures, accepted for Ap

    Semiconductor resonator solitons above band gap

    Full text link
    We show experimentally the existence of bright and dark spatial solitons in semiconductor resonators for excitation above the band gap energy. These solitons can be switched on, both spontaneously and with address pulses, without the thermal delay found for solitons below the band gap which is unfavorable for applications. The differences between soliton properties above and below gap energy are discussed.Comment: 4 pages, 7 figure

    Consequences of critical interchain couplings and anisotropy on a Haldane chain

    Get PDF
    Effects of interchain couplings and anisotropy on a Haldane chain have been investigated by single crystal inelastic neutron scattering and density functional theory (DFT) calculations on the model compound SrNi2_2V2_2O8_8. Significant effects on low energy excitation spectra are found where the Haldane gap (Δ00.41J\Delta_0 \approx 0.41J; where JJ is the intrachain exchange interaction) is replaced by three energy minima at different antiferromagnetic zone centers due to the complex interchain couplings. Further, the triplet states are split into two branches by single-ion anisotropy. Quantitative information on the intrachain and interchain interactions as well as on the single-ion anisotropy are obtained from the analyses of the neutron scattering spectra by the random phase approximation (RPA) method. The presence of multiple competing interchain interactions is found from the analysis of the experimental spectra and is also confirmed by the DFT calculations. The interchain interactions are two orders of magnitude weaker than the nearest-neighbour intrachain interaction JJ = 8.7~meV. The DFT calculations reveal that the dominant intrachain nearest-neighbor interaction occurs via nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty dd orbital of V ions. The present single crystal study also allows us to correctly position SrNi2_2V2_2O8_8 in the theoretical DD-JJ_{\perp} phase diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015
    corecore