1,909 research outputs found
Isospin splitting of the nucleon mean field
The isospin splitting of the nucleon mean field is derived from the Brueckner
theory extended to asymmetric nuclear matter. The Argonne V18 has been adopted
as bare interaction in combination with a microscopic three body force. The
isospin splitting of the effective mass is determined from the
Brueckner-Hartree-Fock self-energy: It is linear acording to the Lane ansatz
and such that for neutron-rich matter. The symmetry potential
is also determined and a comparison is made with the predictions of the
Dirac-Brueckner approach and the phenomenological interactions. The theoretical
predictions are also compared with the empirical parametrizations of neutron
and proton optical-model potentials based on the experimental nucleon-nucleus
scattering and the phenomenological ones adopted in transport-model simulations
of heavy-ion collisions. The direct contribution of the rearrangement term due
to three-body forces to the single particle potential and symmetry potential is
discussed.Comment: 8 pages, 10 figure
A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears
Variational principle for Kolmogorov-Petrovsky-Piskunov (KPP) minimal front
speeds provides an efficient tool for statistical speed analysis, as well as a
fast and accurate method for speed computation. A variational principle based
analysis is carried out on the ensemble of KPP speeds through spatially
stationary random shear flows inside infinite channel domains. In the regime of
small root mean square (rms) shear amplitude, the enhancement of the ensemble
averaged KPP front speeds is proved to obey the quadratic law under certain
shear moment conditions. Similarly, in the large rms amplitude regime, the
enhancement follows the linear law. In particular, both laws hold for the
Ornstein-Uhlenbeck process in case of two dimensional channels. An asymptotic
ensemble averaged speed formula is derived in the small rms regime and is
explicit in case of the Ornstein-Uhlenbeck process of the shear. Variational
principle based computation agrees with these analytical findings, and allows
further study on the speed enhancement distributions as well as the dependence
of enhancement on the shear covariance. Direct simulations in the small rms
regime suggest quadratic speed enhancement law for non-KPP nonlinearities.Comment: 28 pages, 14 figures update: fixed typos, refined estimates in
section
Quark Coulomb Interactions and the Mass Difference of Mirror Nuclei
We study the Okamoto-Nolen-Schiffer (ONS) anomaly in the binding energy of
mirror nuclei at high density by adding a single neutron or proton to a quark
gluon plasma. In this high-density limit we find an anomaly equal to two-thirds
of the Coulomb exchange energy of a proton. This effect is dominated by quark
electromagnetic interactions---rather than by the up-down quark mass
difference. At normal density we calculate the Coulomb energy of neutron matter
using a string-flip quark model. We find a nonzero Coulomb energy because of
the neutron's charged constituents. This effect could make a significant
contribution to the ONS anomaly.Comment: 4 pages, 2 figs. sub. to Phys. Rev. Let
Last passage percolation and traveling fronts
We consider a system of N particles with a stochastic dynamics introduced by
Brunet and Derrida. The particles can be interpreted as last passage times in
directed percolation on {1,...,N} of mean-field type. The particles remain
grouped and move like a traveling wave, subject to discretization and driven by
a random noise. As N increases, we obtain estimates for the speed of the front
and its profile, for different laws of the driving noise. The Gumbel
distribution plays a central role for the particle jumps, and we show that the
scaling limit is a L\'evy process in this case. The case of bounded jumps
yields a completely different behavior
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition
Inositol phosphates (InsPs) are signaling molecules with multiple roles in cells. In particular Graphic (InsP6) is involved in mRNA export and editing or chromatin remodeling among other events. InsP6 accumulates as mixed salts (phytate) in storage tissues of plants and plays a key role in their physiology. Human diets that are exclusively grain-based provide an excess of InsP6 that, through chelation of metal ions, may have a detrimental effect on human health. Ins(1,3,4,5,6)P5 2-kinase (InsP5 2-kinase or Ipk1) catalyses the synthesis of InsP6 from InsP5 and ATP, and is the only enzyme that transfers a phosphate group to the axial 2-OH of the myo-inositide. We present the first structure for an InsP5 2-kinase in complex with both substrates and products. This enzyme presents a singular structural region for inositide binding that encompasses almost half of the protein. The key residues in substrate binding are identified, with Asp368 being responsible for recognition of the axial 2-OH. This study sheds light on the unique molecular mechanism for the synthesis of the precursor of inositol pyrophosphates
Asymptotics for turbulent flame speeds of the viscous G-equation enhanced by cellular and shear flows
G-equations are well-known front propagation models in turbulent combustion
and describe the front motion law in the form of local normal velocity equal to
a constant (laminar speed) plus the normal projection of fluid velocity. In
level set formulation, G-equations are Hamilton-Jacobi equations with convex
( type) but non-coercive Hamiltonians. Viscous G-equations arise from
either numerical approximations or regularizations by small diffusion. The
nonlinear eigenvalue from the cell problem of the viscous G-equation
can be viewed as an approximation of the inviscid turbulent flame speed .
An important problem in turbulent combustion theory is to study properties of
, in particular how depends on the flow amplitude . In this
paper, we will study the behavior of as at
any fixed diffusion constant . For the cellular flow, we show that
Compared with the inviscid G-equation (), the diffusion dramatically slows
down the front propagation. For the shear flow, the limit
\nit where
is strictly decreasing in , and has zero derivative at .
The linear growth law is also valid for of the curvature dependent
G-equation in shear flows.Comment: 27 pages. We improve the upper bound from no power growth to square
root of log growt
In Defense of Dynamical Explanation
Proponents of mechanistic explanation have argued that dynamical models are mere phenomenal models, in that they describe rather than explain the scientific phenomena produced by complex systems. I argue instead that dynamical models can, in fact, be explanatory. Using an example from neuroscientific research on epilepsy, I show that dynamical models can meet the explanatory demands met by mechanistic models, and as such occupy their own unique place within the space of explanatory scientific models
Composite nucleons in scalar and vector mean-fields
We emphasize that the composite structure of the nucleon may play quite an
important role in nuclear physics. It is shown that the momentum-dependent
repulsive force of second order in the scalar field, which plays an important
role in Dirac phenomenology, can be found in the quark-meson coupling (QMC)
model, and that the properties of nuclear matter are well described through the
quark-scalar density in a nucleon and a self-consistency condition for the
scalar field. The difference between theories of point-like nucleons and
composite ones may be seen in the change of the -meson mass in nuclear
matter if the composite nature of the nucleon suppresses contributions from
nucleon-antinucleon pair creation.Comment: 10 page
Coulomb Energy of Nuclei
The density functional determining the Coulomb energy of nuclei is calculated
to the first order in . It is shown that the Coulomb energy includes three
terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy
(CCE), which contributes considerably to the surface energy, the mass
difference between mirror nuclei, and the single-particle spectrum. A CCE-based
mechanism of a systematic shift of the single-particle spectrum is proposed. A
dominant contribution to the CCE is shown to come from the surface region of
nuclei. The CCE effect on the calculated proton drip line is examined, and the
maximum charge of nuclei near this line is found to decrease by 2 or 3
units. The effect of Coulomb interaction on the effective proton mass is
analyzed.Comment: 10 pages, Latex. Devoted to 90-th Anniversary of A.B. Migdal's
Birthda
Parity Violating Measurements of Neutron Densities
Parity violating electron nucleus scattering is a clean and powerful tool for
measuring the spatial distributions of neutrons in nuclei with unprecedented
accuracy. Parity violation arises from the interference of electromagnetic and
weak neutral amplitudes, and the of the Standard Model couples primarily
to neutrons at low . The data can be interpreted with as much confidence
as electromagnetic scattering. After briefly reviewing the present theoretical
and experimental knowledge of neutron densities, we discuss possible parity
violation measurements, their theoretical interpretation, and applications. The
experiments are feasible at existing facilities. We show that theoretical
corrections are either small or well understood, which makes the interpretation
clean. The quantitative relationship to atomic parity nonconservation
observables is examined, and we show that the electron scattering asymmetries
can be directly applied to atomic PNC because the observables have
approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.
- …
