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ABSTRACT 

Proponents of mechanistic explanation have argued that dynamical models are mere phenome-

nal models, in that they describe rather than explain the scientific phenomena produced by complex 

systems. I argue instead that dynamical models can, in fact, be explanatory.  Using an example from 

neuroscientific research on epilepsy, I show that dynamical models can meet the explanatory demands 

met by mechanistic models, and as such occupy their own unique place within the space of explanatory 

scientific models. 
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1 INTRODUCTION  

Mechanisms and mechanistic explanations have without question become the center of recent 

debates in the philosophical literature on explanation.  After numerous and notorious problems with 

what was once considered the received view on scientific explanation—Hempel’s deductive-nomological 

or ‘covering law’ model (Hempel 1965)—mechanistic explanation has come to the fore as a potential 

replacement model of explanation, at least within a large majority of the so-called ‘soft sciences,’ such 

as biology and neuroscience.  The popularity of mechanistic models as a paradigm of scientific explana-

tion can in part be traced to the widespread use of mechanistic models  by scientists in the 

biobehavioral sciences, and also to the fact that mechanistic models of explanation manage to sidestep 

many counterexamples that plague law-based conceptions.  In fact, the explosion of discussions about 

mechanisms and their extension to various scientific disciplines has been jokingly referred to as a sort of 

‘mechanism imperialism’ (Weiskopf 2011a), whereby mechanistic explanation threatens to invade and 

conquer the explanatory domains of other kinds of models, either by calling the explanations that al-

ready exist in these domains forms of mechanistic explanation, or by denying these other kinds of mod-

els explanatory power at all. 

Despite the undeniable explanatory power of mechanistic models in certain scientific disciplines, 

some philosophers have resisted the move to ‘mechanize’ all forms of explanation in the life sciences, 

either by returning to some modified version of law-based accounts (cf. Mitchell 1997; Leuridan 2010), 

or by arguing for the legitimacy of other forms of explanation that rely on different kinds of explanatory 

models—such as functional analysis, cognitive models, and dynamical models—in the same scientific 

domains in which mechanistic models are thought to reign supreme (cf. Weiskopf 2011a; Cummins 
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1983; Zednick 2011; Chemero & Silberstein 2008).
1
 This article will join the ranks of the latter by defend-

ing dynamical models from criticisms by mechanists. The point I hope to convey is that dynamical mod-

els can meet all the normative demands on good explanations that mechanistic models meet, and as 

such occupy their own unique place within the space of explanatory scientific models. 

In the upcoming discussion, I first review the basics of mechanistic models and their purported 

explanatory advantages (Section 2).  I then describe dynamical models and introduce some of the de-

bates about whether or not dynamical models are or can be explanatory. In particular, I focus on the 

criticisms leveled at dynamical models in a recent paper by Kaplan and Craver (2011), wherein  they ar-

gue that dynamical models are not explanatory unless the variables in such models map onto underlying 

mechanisms (Section 3). I reveal some problems with this mapping constraint and I follow Weiskopf’s 

(2011) treatment of explanatory models that are not mechanistic, arguing that his justification of the 

explanatory efficacy of cognitive models can be extended in an analogous fashion to dynamical models 

(Section4). I then anticipate and respond to objections (Section5), and conclude that, despite mecha-

nists’ claims to the contrary, dynamical models can and do offer genuine scientific explanations. 

 

 

 

 

 

                                                           
1
 From this point forth ,my comments on mechanisms and dynamical models can be assumed to be regarding the 

life sciences, most especially neuroscience and biology. I do not address whether my arguments apply to other 

sciences, although I expect that the explanatory import of dynamical models will in fact have similar structure in 

other fields that make use of such models. 
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2 MECHANISTIC MODELS AND MECHANISTIC EXPLANATION 

Before getting into our discussion about different kinds of explanatory models,  a few 

clarificatory remarks about models are in order.  By ‘model,’ I mean any kind of representation that aims 

to describe systems or properties situated in the real world.  Models can be couched mathematically by 

representing the world in terms of systems of equations; they can be verbal descriptions (i.e. explanato-

ry texts) of processes aimed at, e.g., elucidating basic principles of a complex system; they can be visual 

or diagrammatical, as in circuit diagrams used to model conductance properties of neurons—any of the-

se suffices to qualify as a model in the way used in this article. 

Generally speaking, mechanistic models describe “how the constituent entities and activities [of 

a mechanism] are organized to exhibit a phenomenon” (Craver 2007). The phenomenon to be ex-

plained—called the explanandum phenomenon—is usually some function, or behavior ‘F’ of a mecha-

nism (or more generally, of a system) ‘S.’  What mechanistic models explain, then, is S’s (the system’s) 

capacity to F (perform some function). Mechanistic explanation proceeds by showing how the 

explanandum phenomenon comes about in virtue of the activities of the entities in the mechanism, as 

well as its unique temporal, organizational, and structural properties. 

An example of a mechanistic explanation is Craver’s (2007) description of neurotransmitter re-

lease in a typical neuron: 

The mechanism begins … when an action potential depolarizes the axon 

terminal and so opens voltage-sensitive calcium (Ca
2+

) channels in the 

neuronal membrane. Intracellular Ca
2+

 concentrations rise, causing 

more Ca
2+  

to bind to Ca
2+

/Calmodulin dependent kinase. The latter 

phosphorylates synapsin, which frees the transmitter-containing vesicle 

from the cytoskeleton. At this point, Rab3A and Rab3C target the freed 

vesicle to release sites in the membrane. Then v-SNARES (such as 
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VAMP), which are incorporated into the vesicle membrane, bind to t-

SNARES (such as syntaxin and SNAP-25), which are incorporated into 

the axon terminal membrane, thereby bringing the vesicle and the 

membrane next to one another. Finally, local influx of Ca
2+

 at the active 

zone in the terminal leads this SNARE complex, either acting alone or in 

concert with other proteins, to open a fusion pore that spans the mem-

brane to the synaptic cleft. (p.4-5) 

What is being explained here is the phenomenon of vesicular neurotransmitter release in a neu-

ral cell; what is doing the explaining is the description of a mechanism—the entities, such as proteins, 

ions, membranes, and vesicles; their activities, such as binding, phosphorylating, and opening; and the 

unique temporal and organizational features of the mechanism, such as the particular sequence of 

events and the spatial location and morphological characteristics of the entities. The activities of the 

entities in the mechanism are what produce, maintain, or underlie the phenomenon in question, and so 

by describing the mechanism we are explaining how the phenomenon comes about (Craver 2007). This 

is supposed to be one of the main advantages of mechanistic explanations: they reveal the productive 

relation between the explanans and the explanandum phenomenon; that is, the explanans (i.e. the 

mechanism) makes the explanandum phenomenon intelligible (Leuridan 2010). 

Proponents of mechanistic explanation can be seen as advancing a variety of claims about what 

constitutes a good explanation and why mechanistic models are explanatory. A few of them will be cen-

tral to understanding why mechanists reject the claim that dynamical models can be explanatory, and 

they are summed up by the following statements (Kaplan & Craver 2011): 
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(1)  Explanations are adequate to the extent that they describe causal 

mechanisms that maintain, produce, or underlie the explanandum 

phenomenon.
2
  

(2)  Mechanistic models have explanatory force in virtue of the fact that 

they describe causes and mechanisms that produce or underlie the 

phenomenon.  

(3)  To describe causal mechanisms, one must describe component 

parts, their relevant properties and activities, and how they are or-

ganized together causally, spatially, temporally, and hierarchically. 

(605) 

These claims form the foundation of the mechanistic paradigm. When appropriately qualified, 

they assert that a good explanation describes causal mechanisms, that a model that describes causal 

mechanisms is ipso facto explanatory, and that to adequately describe causal mechanisms one needs to 

know and understand the components of the mechanism, their activities within the mechanism, and the 

organization of these components and their activities. Thus a good mechanistic model will describe the 

causal mechanism responsible for the explanandum phenomenon without leaving out any causally rele-

vant components or activities; it will specify the initial and termination conditions of the mechanism; 

and it will likely also provide information that tells us how it is (often hierarchically) situated in its envi-

ronment. In addition, Craver and other mechanists (cf. Craver 2006 and 2007; Bogen 2008) claim that 

one of the main advantages to a good mechanistic model—and also, they argue, an outcome that pro-

vides evidence that we are doing genuine explanatory work—is that it will reveal the “knobs and levers” 

that we may take advantage of to manipulate and control the system. 

                                                           
2
 This claim is intended for the domain of cognitive and systems neurosciences specifically, and the biobehavioral 

sciences more broadly. 
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There are a few caveats here worth noting. First, a given model can be a model of a mechanism 

without being a mechanistic model.  Presumably, many dynamical models are models of mechanisms 

(particularly when they are employed in biology and neuroscience), but this does not make dynamical 

models mechanistic models. What makes a model qualify as a certain kind of model is how the model 

represents its target, not what the target is per se. Mechanistic models are therefore models that repre-

sent real-world mechanisms or systems as mechanisms, whereas, e.g., a dynamical model might be rep-

resenting a mechanism as a dynamical system. Put another way, all mechanistic models are models of 

mechanisms, but not all models of mechanisms are mechanistic models. 

Second, while mechanistic explanation may be useful for a variety of explanatory goals, most 

mechanists are careful to argue that mechanistic explanation is most appropriate when the 

explanandum phenomenon is some system’s capacity to perform some function or behavior (i.e. S’s ca-

pacity to F).  Thus the proper targets for mechanistic explanation include such things as a neuron’s abil-

ity to release neurotransmitters, a lamprey’s ability to swim, a virus’s capacity to self-replicate, or the 

capacity of a neural network to generate waves of excitatory activity. It should be fairly obvious from 

this that many explanations in the life sciences are going to take the form of mechanistic explanation, in 

no small part because of the kinds of phenomena these sciences seek to explain.  

In sum, mechanists argue that mechanistic models are explanatory because they describe the 

causal mechanism underlying the explanandum phenomenon, and they do this in an intelligible way.  

Mechanists thus maintain an implicit (though often explicit) commitment  to the idea that the only way 

to explain a phenomenon is to describe the underlying causes which support it.  Any putative explanato-

ry model that fails to describe causal mechanisms in the ways mechanistic models do therefore falls 

short of providing a genuine explanation on this account.  In the next section, we will see how some 

mechanists have applied this critique to dynamical models.  
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3 DYNAMICAL MODELS AND THEIR CRITICS 

Dynamical models can be found across a wide range of sciences, from physics, where they are 

utilized extensively in thermodynamics and statistical mechanics (Batterman 1998; Stanley 1999); to 

computational neuroscience, where they illuminate various timing and behavioral properties of individ-

ual neurons as well as entire neural networks (Rabinovich et al. 2006; Izhikevich 2007); and even to the 

nutritional and health sciences, where they have recently been used to model weight gain and changes 

in body mass over time in efforts to better understand obesity (Chow & Hall 2008). The utility of dynam-

ical models comes not only from the flexibility inherent to using mathematical formulas to represent a 

virtually limitless variety of system properties, but also from the geometric tools that are a key feature 

of qualitative dynamical systems analysis, tools that can be used to help us visualize complicated system 

behavior and make more intuitive mathematical information that would otherwise be opaque. 

Generally speaking, dynamical models are mathematical models that are composed of a set of 

one or more differential or difference equations that contain variables and parameters that stand for 

different properties of the system being modeled.  One of the key features of dynamical models is that 

they explicitly track the evolution of system variables over time, often with an extremely high level of 

detail, keeping track of multiple variables and parameters and their mutual influence on one another as 

the system moves through time. In addition to their general modeling capabilities, dynamical models 

can be assessed using qualitative dynamical systems analysis, which uses the geometric properties of 

dynamical systems to predict and organize different kinds of dynamical activity.
3
 Dynamical models are 

thus indispensible for modeling complex nonlinear processes as well as for dissecting subtleties involved 

in transient or rhythmic processes. Given that transient and rhythmic processes abound in neural sys-

tems, dynamical models are essential in computational neuroscience and related fields (cf. Rieke et al. 

1997; Rabinovich et al. 2006; Izhikevich 2007). 

                                                           
3
 See Strogatz (1994) for a useful introduction to these methods. 
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According to Zednick (2011), the received view on dynamical explanation is that it is a special 

case of the well-known covering law explanation, originally proposed by Hempel (1965).  Covering law 

explanations proceed by deriving the explanandum phenomenon from the conjunction of a law of na-

ture (loosely understood as a non-accidental counterfactual-supporting generalization) and some set of 

initial conditions.
4
  Dynamical explanation is thought to be organized in exactly this way: the future state 

of a dynamical system is predicted (or derived) from a set of differential equations and the initial values 

of the variables and parameters that characterize that system. Thus most have conceived of dynamical 

explanation as a form of covering-law explanation, with the unfortunate consequence that the well-

known flaws of the latter will, by analogy, be extended to the former (Zednick 2011; Kaplan & Craver 

2011).
5
  

An example of this sort of critique of dynamical explanation can be found in a recent article by 

Kaplan and Craver (2011).  Kaplan and Craver argue that, at least within the domain of systems and cog-

nitive neuroscience, dynamical models explain a phenomenon only when “there is a plausible mapping 

between elements in the model and elements in the mechanism for the phenomenon” (p. 601).
6
 Other-

wise, they argue, dynamical models are mere re-descriptions of the phenomenon under study, a sort of 

‘mathematical biography’ that summarizes observable features of a system without explaining how 

those features come about.  Their accusation is that unless dynamical models can meet their “3M con-

straint” (a model-to-mechanism-mapping), such models are phenomenal in nature—i.e. their merit does 

not go beyond empirical adequacy and/or predictive success. Thus dynamical models are phenomenal 

                                                           
4
 The fact that one can derive the explanandum in the covering law model is the basis of the association between 

prediction and explanation—if we can predict the occurrence of a phenomenon, then we have shown some basic 

understanding of it on this account. 
5
 It turns out that in practice at least, simulated solutions via numerical methods occur more often than analytical 

solutions. This may have implications for the validity of this conception of dynamical explanation, at least if it is 

supposed to adequately serve as a model for how scientists actually use dynamical models to explain phenomena. 
6
 Presumably, Kaplan and Craver would extend this mapping criterion to other domains of science, at least those in 

which systems can plausibly be interpreted as being mechanisms. My arguments should apply to those domains as 

well. 
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models that simply re-characterize the phenomenon—and unlike mechanistic models, they don’t ex-

plain how the phenomenon comes about. 

The main line of argument Kaplan and Craver offer against dynamical explanation consists of 

comparing dynamical explanation to covering law explanation, given the similarities of their structures 

noted above.  The covering law model is notorious for certain objections that have caused it to fall out 

of favor among contemporary philosophers, not the least of which is the contention that prediction is 

not sufficient for explanation. The basis for this claim rests on a series of counterexamples that are 

meant to appeal to intuitions about what is or is not an explanation. To borrow from some common ex-

amples that Kaplan and Craver appeal to, a barometer reading may predict the presence of a thunder-

storm, but the barometer reading does not explain the thunderstorm. A sputtering engine may predict 

an empty gas tank, but the engine sputtering does not explain the  empty gas tank.  The length of the 

shadow cast by a flagpole and the angle of the sun may predict the height of the flagpole, but the length 

of the shadow and angle of the sun do not explain the height of the flagpole.  What these examples are 

meant to show is just that our intuitive judgments about prediction and explanation may come apart, 

and when this happens, it seems to suggest that prediction is not sufficient for explanation.
7
 

In addition, Kaplan and Craver note that while explanatory models suffer from the inclusion of 

irrelevant detail, predictive models do not—irrelevant details do not alter a model’s ability to generate 

accurate predictions (2011). The example they offer is that of the classic physics model that predicts the 

                                                           
7
 These counterexamples are not without problems themselves, and I am not convinced they completely overturn 

the notion that prediction can be enough for explanation, at least in some cases. The simplistic, everyday nature of 

the examples only suffices to show that these kinds of predictive correlations are not enough to qualify as genuine 

explanations. However, these examples look very different from the kinds of complex predictive models used in 

the sciences, models that are perhaps fitted to one dataset and then shown to be predictive for a novel one (e.g. 

Hodgkin and Huxley’s equation for the action potential, various economic models, etc). At best the analogy is 

strained.  

 Also, the sputtering engine case is not a genuine counterexample, since the prediction it makes is about 

what best explains the sputtering of the engine, and therefore what is most likely to the be the cause. Inferring 

from a sputtering engine to an empty gas tank is a case of inference to the best explanation, and so it cannot serve 

to help guide our intuitions about when a prediction does or does not constitute an explanation. The prediction in 

this case is about an explanation.  
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period of a pendulum from the length of the rod and its initial velocity. The prediction of the pendulum’s 

period is the same, even if we include details about what color the pendulum is and what it is made of.  

Of course these details aren’t relevant to determining the period, but they nevertheless do not detract 

from the predictions made by the model. Thus Kaplan and Craver conclude that since explanatory mod-

els and predictive models differ with respect to individual outcomes of including irrelevant detail,  ex-

planatory models and predictive models are subject to distinct epistemic norms. And if explanation and 

prediction are governed by different norms, then explanation cannot be (merely) prediction (p.607).  

All of this is relevant to dynamical models in particular, because one of the hallmarks of dynam-

ical models is their predictive power. Given information about initial conditions and parameter values, a 

dynamical model can predict the future state of the system with a high degree of accuracy. But it is part 

of the mechanist’s critique that ‘mere prediction’ is not sufficient for explanation, because one can de-

rive the explanandum phenomenon without knowing exactly how it came about, which they argue is 

what only the mechanistic story can provide.  This is the basis for Craver’s claim that the Hodgkin and 

Huxley (HH) model of the action potential is a dynamical model that, despite generating highly-accurate 

predictions, does not explain the action potential (Craver 2007 and 2008). (However, this point is up for 

debate; see Weber 2008 for an alternative interpretation; see Bogen 2008 for continued discussion). 

Craver argues that the only thing that can explain a neuron’s ability to produce an action potential is a 

mechanistic model that describes all and only the relevant entities and activities that together produce 

an action potential. However successful the HH formalism has been for predicting the time course of 

action potentials, it doesn’t tell us how a neuron generates one in the first place, and thus it does not 

explain the action potential on a mechanist’s account. As a result, Kaplan and Craver claim that “dynam-

ical models are not part of or an alternative to mechanistic explanations; at best they are descriptive 

tools for representing how complex mechanisms work” (p.602). 
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 As a consequence of the above claims, Kaplan and Craver propose that the only occasion in 

which dynamical models can be explanatory is when such models meet the 3M constraint.  Kaplan and 

Craver stipulate 3M as follows (Kaplan & Craver 2011): 

(3M) In successful explanatory models in cognitive and systems neuro-

science (a) the variables in the model correspond to component activi-

ties, properties, and organizational features of the target mechanism 

that produces, maintains, or underlies the phenomenon, and (b) the 

(perhaps mathematical) dependencies posited among these variables in 

the model correspond to the (perhaps quantifiable) causal relations 

among the components of the target mechanism. (611) 

It should be clear from the above that while mechanistic models will inherently meet 3M, many 

dynamical models will not. In fact, on closer inspection of 3M, one finds that it essentially says that a 

model is a successful explanatory model if it is a mechanistic model, since (a) and (b) are the characteris-

tic features of mechanistic models. Only if dynamical models map to underlying mechanisms can they be 

considered explanatory on this account. Under their view, all dynamical models (as well as computa-

tional or functionalist models) that embody no commitment to the underlying structure which gives rise 

to the phenomena are descriptive models. And by merely describing the phenomena (i.e. by being phe-

nomenal models), they do not explain it, or so the argument goes. The following quote from Kaplan and 

Craver summarizes their view succinctly: 

Dynamical models do not provide a separate kind of explanation subject 

to distinct norms. When they explain phenomena, it is because they de-

scribe mechanisms. As descriptive tools, they can be used to describe 

mechanisms phenomenally or mechanistically, correctly or incorrectly, 

and completely or incompletely. (618; my emphasis)  
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Mechanists are not at all unclear about what does the explaining when the phenomenon to be 

explained is S’s capacity to F.  Mechanistic models explain S’s capacity to F because they describe the 

causal mechanism which sustains that capacity. By contrast, dynamical models are merely descriptive of 

phenomena, ways of characterizing the phenomenon in compact mathematical form—unless, that is, 

there is some plausible mapping between the variables in the model and the underlying mechanism. 

When such a mapping exists, dynamical models are describing mechanisms, and the greater extent to 

which they are able to describe mechanisms (i.e. correctly, mechanistically, and completely), the greater 

their explanatory power.  This is the view that Kaplan and Craver defend, and it is the view I criticize in 

the next section. 
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4 HOLDING THE LINE AGAINST MECHANISTIC IMPERIALISM 

Kaplan and Craver’s views on dynamical models make it clear why some philosophers have 

thought of the mechanistic tradition as increasingly imperialistic—in the case of dynamical models, the 

3M constraint essentially requires dynamical models to be models of mechanisms in order for them to 

be considered explanatory. In this section, I challenge Kaplan and Craver’s views on dynamical models 

and the 3M constraint by providing an example of a dynamical model that fails to meet 3M and yet nev-

ertheless is explanatory.  

As a reminder, the 3M constraint—the requirement that dynamical models map onto underlying 

mechanisms in order for them to be considered explanatory—is at bottom an assertion about the ex-

planatory primacy of mechanistic models, because it requires models in neuroscience to do what mech-

anistic models do in order to achieve any kind of explanatory adequacy. Thus dynamical models, cogni-

tive models, and functional-analytic models all will be deemed explanatorily inadequate unless they 

properly map and have specified commitments to an underlying mechanism. It’s important to note that 

3M is not an argument that only mechanistic models can be good explanations—it’s an assertion to that 

effect. Of course, Kaplan and Craver provide examples of dynamical models that fail to meet 3M, such as 

Kelso’s HKB model of bimanual coordination, and they rely on intuitive judgments that such models are 

phenomenal and not explanatory to support the implementation of 3M. But 3M is only presumed to be 

an arbiter of good explanations in neuroscience because it relies on the presupposition that good expla-

nations in neuroscience are mechanistic explanations. If one is not immediately sold on this idea, then 

one must dig further to uncover what is supposed to be the thing that makes describing causal mecha-

nisms the only way to explain a phenomenon.
8
  

                                                           
8
 The issues here are deep and preclude thorough treatment in this article. If mechanistic explanation is a kind of 

causal explanation, then it should be clear that our operative notion of cause is paramount. Many of the issues I 

discuss from this point on in the paper will be affected by the theory of causation one adopts. 
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Without independent justification, 3M begs the question of explanatory adequacy in assuming 

that an adequate explanation of a phenomenon has to be a mechanistic explanation. To say that mech-

anistic explanation is superior over dynamical explanation because only the former describe entities, 

activities, and organizational features that produce a phenomenon is just to say that mechanistic expla-

nation is superior because it is mechanistic explanation. Of course, mechanists argue that the virtues of 

mechanistic explanation justify these claims and circumvent the apparent circularity of their arguments. 

But though the explanatory virtues of mechanistic models are many(cf. Bechtel 2011; Craver 2007 and 

2008), other kinds of models can meet these standards as well. Dynamical models, for example, also 

have numerous explanatory virtues, and can provide genuine explanations in certain contexts, as I’ll ar-

gue below.  If this is right, then what is needed is a way of evaluating the epistemic virtues of explanato-

ry models independently of their specific form (i.e. mechanistic, dynamical, cognitive, functional-

analytic, etc).  Explanatory models can then be evaluated on dimensions of assessment that do not pre-

suppose that a given type of model is superior.  Evaluating dynamical models under this neutral frame-

work then becomes key in showing that dynamical models can perform as mechanistic models do in 

terms of their meeting normative requirements on good models in general, and more importantly, in 

terms of their being explanatorily adequate.  

In a recent paper, Weiskopf  (2011) argues that, despite its surge in popularity, mechanistic ex-

planation should not be seen as the only viable form of scientific explanation, and further that other 

kinds of models can meet the same normative requirements on good models that mechanistic models 

do.  Weiskopf extracts two central dimensions of epistemic evaluation  from Craver’s (2007) treatment 

of the norms governing mechanistic models:   

(1)  degree of evidential support of the model (what Craver calls “de-

grees of realism”); and 
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 (2)  degree of representational accuracy of the model, evaluated in 

terms of grain  size and correctness. 

As Weiskopf rightly points out, these dimensions are equipped to evaluate all types of models, 

and not just mechanistic ones (Weiskopf 2011).  While Weiskopf uses these dimensions of normative 

assessment to evaluate various cognitive models, I will use these dimensions to evaluate dynamical 

models.  And since these norms were extracted from those used by mechanists to promote mechanistic 

explanation, they serve as fair arbiters of dynamical models.  In the remainder of this section, I show 

that dynamical models can meet all the requirements on good models that mechanistic models meet, 

without themselves being describable in mechanistic terms (i.e. without being considered mechanistic 

models themselves).  To do this, I will need to show that dynamical models can be highly confirmed 

models, which speaks to degrees of evidential support, and that dynamical models can be representa-

tionally accurate, in that they correctly describe or represent those features of the target system that 

they aim to model.   

To illustrate how dynamical models can meet these epistemic norms and in addition be consid-

ered explanatory, it will be useful to work with an example. Here I present a dynamical model that is 

based on models of neural networks aimed at understanding epilepsy in the brain. 

Various kinds of computational models have recently been used to simulate epileptiform behav-

ior in neural networks, with the long-term aim of understanding how certain network and neural prop-

erties can give rise to epileptic seizures (Netoff et al. 2004; Ursino et al. 2006).  Because epileptiform 

activity  in the brain seems to arise from patterns of connectivity and related network-level properties, 

researchers have  been most interested in modeling epilepsy at the level of neural networks, trying out 

various kinds of networks and varying parameters such as synaptic strength in order to simulate the 

seizing and bursting activities characteristic of epilepsy.   
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Netoff and colleagues wanted to explore how epileptiform behaviors (i.e. seizing and bursting) 

in the hippocampus may be a function of the general connectivity of the neural networks in which they 

occur.  Given the fact that bursting activity originates in the CA3 region of the hippocampus and seizing 

originates in the CA1,  Netoff and colleagues hypothesized that certain sorts of connectivity patterns 

could explain the differences in network behavior seen in these two regions in previous electrophysio-

logical studies.  More specifically, they hypothesized that: (1) the CA3 exhibits bursting because it has 

more long distance neural connections than CA1, thus allowing for the recurrent excitation that is the 

signature of network bursting; and (2)  the CA1 exhibits seizing activity due to fewer long distance neural 

connections and less recurrent excitation, which allows activity to spread throughout the network more 

slowly, which in turn ensures the existence of a sustainable supply of excitable CA1 neurons. 

To test these hypotheses, the Netoff model (NM) simulates networks of excitatory neurons with 

a small-world network pattern of connectivity, which is characterized by mostly local connections and a 

few random long-distance connections.
9
  As a result of this topology, NM can be characterized by just 

three parameters: the number of nodes (N); the proportion of long-distance connections that are ran-

domly rewired (r); and the proportion of nodes to which each neuron synapses (k). 

While the majority of detail need not concern us here, there a few things to note about the NM. 

First, the dynamical model is built on a general network model, which is composed of a specific number 

of nodes (neurons), long-distance connections (neurons that synapse out of their own immediate 

‘neighborhood’), and a proportion of the total number of neurons to which each neuron synapses. Each 

node in the network model represents a neuron, and the activity of the neuron is represented by an or-

dinary differential equation (one differential equation per neuron in the network), which then essential-

ly transforms the network model into a stochastic dynamical model. Netoff and colleagues then tested 

several different kinds of neuron models (i.e. different kinds of differential equations standing in for 

                                                           
9
 Small world networks are the behind the famed ‘Six degrees of separation’ phenomenon, known to some as ‘Six 

degrees of Kevin Bacon.’ 
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each of the neuron nodes), to show that the behavior of the network and the effect of the connectivity 

pattern did not depend on the kind of neuron model used—network behaviors of bursting and seizing 

occurred strictly as a result of the connectivity of the network, and not as a result of the details of the 

individual neurons. This led to one more iteration in the NM development, as once the stochastic model 

showed that only network connectivity mattered, Netoff and colleagues were able to reduce the model 

to a discrete-time dynamical system with only one or two dimensions. Reducing the model in this way—

a major advantage of dynamical systems modeling—allowed them to use qualitative dynamical systems 

analysis to understand how waves of excitatory activity propagated across the network (Netoff et al. 

2004). 

The NM verified the predictions of the scientists: just by changing the connectivity parameters in 

the model, networks could be induced to exhibit both bursting and seizing behaviors. Previously gath-

ered data suggested a high degree of excitatory connections in the CA3, which is the location in the hip-

pocampus known to exhibit bursting behavior. Tuning the parameters of the NM so that the connectivi-

ty of the network mimicked that of increased excitatory connections caused the network to exhibit 

bursting activity, consistent with experimental preparations of CA3. Tuning the parameters to mimic 

connectivity observed in CA1 also produced the seizing activity characteristic of CA1. In their own words, 

the dynamical model “explains how specific changes in the topology or synaptic strength cause transi-

tions from normal to seizing and then to bursting” (8075). NM is thus able to offer an explanation for a 

specific phenomenon—namely, that different kinds of epileptiform activities originate in different re-

gions of the hippocampus (i.e. CA1’s capacity to seize and CA3’s capacity to burst)—and its results are 

robust across at least three different neuron models. 

Assessing the NM in terms of degree of representational accuracy is fairly straightforward. As a 

reduced 1-D model of wave propagation through a network, the NM certainly leaves out a variety of 

details about the system under study. But as Weiskopf (2011) notes, and the robustness of NM across 
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three different neuron models shows, such details are irrelevant to the modeling purposes of NM and to 

its ability to explain network behavior. Despite the fact that the model is a reduced model with minimal 

parameters to constrain it, the NM is able to accurately represent the connectivity patterns in both the 

CA1 and the CA3 and produce the  associated epileptiform behaviors that occur in these regions of the 

hippocampus. What the NM represents it does so accurately, and details about the individual neurons in 

the network prove to be irrelevant and so are not failures on this dimension of normative assessment. 

Assessing the NM on degree of evidential support is somewhat more complicated, as it can be 

difficult to interpret what constitutes evidence when simulations are involved particularly because we 

often simulate systems that are not transparent to us. Nevertheless, it’s at least in principle possible, 

and in many cases, very likely, that dynamical models can be confirmed by data they accurately predict. 

In the NM example, the model does predict the appropriate shifts found in excitatory networks between 

normal, bursting, and seizing behavior. And we might also say that, had we not know what kinds of 

epileptiform activity the CA1 and CA3 regions would exhibit, but we did know their connectivity patterns 

(i.e. sparse or dense), then we could have used NM to predict the typical kinds of epileptic activity that is 

characteristic of each of these regions. 

As a reminder, the above two dimensions of model assessment are meant to place the NM on a 

continuum that stretches from weak to strong evidential support, and from low to high representational 

accuracy—they do not (nor do they aim  to) determine whether or not a given model is explanatory.  So 

it’s important to note that while a good model may do well in terms of  representational accuracy and 

evidential support, it may not turn out to be explanatory for a given phenomenon (e.g. Kelso’s HKB 

model of bimanual coordination). Conversely, a model that is explanatory for some phenomenon  may 
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not be well confirmed or may employ filler terms that prevent the model from being considered a good 

model on these dimensions of assessment.
10

 

Now, it should be clear from the above that the NM does well on the normative dimensions of 

model assessment, so the question now becomes whether or not NM is explanatory.  Recall that the 

explanatory target for mechanistic models is some system’s ability to perform some function or behav-

ior (i.e. S’s capacity to F).  In order for dynamical models to compete for explanatory adequacy in the 

same domain as mechanistic models, dynamical models need to have the same kinds of explanatory tar-

gets as mechanistic models (if their respective explanatory targets differ in kind, then there is no need 

for comparing their putative explanatory status). In the NM, the explanatory target is the capacity of the 

hippocampus to exhibit differential epileptiform network behaviors in its CA1 and CA3 regions (seizing 

and bursting, respectively).  A proper explanation of this phenomenon then, would involve at minimum 

some description of how different bursting and seizing patterns come about and/or what features of the 

system are responsible for giving rise to the bursting and seizing patterns we observe.  And the NM gives 

precisely this sort of explanation of the bursting/seizing phenomenon in epilepsy.  The connectivity of 

the network and the resulting dynamics explain the different epileptiform capacities of the CA1 and CA3 

regions: by describing the network dynamically, the NM reveals what features of the system are respon-

sible for giving rise to bursting and seizing (and the transitions between them). Moreover, the fully ar-

ticulated model shows—by appeal to these crucial system features—how the different patterns of 

bursting and seizing come about from, e.g., the interplay in network topology and synaptic strength.  At 

this more intuitive level of evaluating what constitutes an explanation of a phenomenon, the NM ap-

pears to do the same sorts of explanatory work as mechanistic models do—it shows what system ele-

                                                           
10

 Of course, this is not to say that a model that does poorly on the two normative dimensions of model assess-

ment has no value or utility whatsoever—it may just be a fledgling model, equivalent to what Craver terms a 

‘mechanism sketch’(2007). Rather, the claim is that the more well-confirmed and representationally accurate the 

model is the better that model will be at doing what models do—providing a true representation of the target 

phenomenon that helps make its workings intelligible to us. 
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ments are important for generating the explanandum capacity and how those elements interact to pro-

duce it. From this perspective, it seems perfectly natural to call the NM an explanatory model for the 

different epileptiform capacities of the hippocampus. 

In addition to being considered a bona fide explanation in general, what is supposed to be char-

acteristic of good explanatory models is that they are able to answer a range of counterfactuals and 

have the potential to help us  manipulate and control the system they model.
11

 Being able to answer 

questions about what would have happened had things been different is the hallmark of an explanatory 

model, and the NM (and no doubt many dynamical models in general) will be able to do this. Given dif-

ferent kinds of network connectivity, NM can answer how the network will behave if we were to change 

such parameters. In addition, it predicts the kinds of activity we might see in networks with properties 

different from the CA1 and the CA3. (Note that the NM is able to do this without being committed to 

exact mechanistic details of the neural substrates underlying the pattern—more on this below.) 

At this point, mechanists might raise the objection that the NM, if it meets the necessary criteria 

for explanatory adequacy,  does so because it satisfies 3M.  That is to say, the parameters in the model 

do in fact correspond to real features of the underlying system, and if this is right, then NM meets 3M, 

and whatever explanatory status it might have attained is just a result from its describing the appropri-

ate neural mechanism. The very fact that the connectivity parameters were tuned to approximate ob-

servations in the CA1 and CA3 seems to suggest that this is in fact the case.  

This objection is well-taken, and it points to some crucial issues regarding what exactly makes 

something a mechanism, and further, what makes something a mechanistic model. First, on the basic 

                                                           
11

 In the absence of any uncontroversial theories of what an explanation qua explanation actually is, it seems rea-

sonable to rely on our intuitive judgments of when a phenomenon has been explained by a putative model, as well 

as the maxim “explanations are as explanations do.”  In other words, good explanations will answer a wide range 

of counterfactuals about the explanandum phenomenon, and they may also reveal ways to manipulate and exploit 

the system giving rise to the phenomenon (presumably, the latter here is a result of the explanation involving 

causal features of the system). If a given model is able to do these things, then we might well consider that model 

explanatory. These issues are obviously crucial to what will ultimately determine whether or not dynamical models 

are explanatory, but space in this article prohibits further analysis. I leave the reader to his own judgments about 

my suggestions here. 
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understanding of mechanism, mechanisms are at bottom both componential (i.e. composed of localiza-

ble entities) and causal (i.e. the components in the mechanism perform activities that are the constitu-

tive causes of the phenomenon). What makes something a mechanistic model, besides the fact that it 

represents a mechanism as a mechanism, is the unique kind of one-one mapping between components 

and activities in the model, and components and activities in the mechanism.  Because any kind of mod-

el can potentially be of a mechanism, the key feature of mechanistic models is that they represent 

mechanisms as mechanisms, and doing this requires that each part of the mechanism has a correspond-

ing part in the model, mutatis mutandis for each (causally relevant) component activity.  Therefore in 

order for the NM to meet 3M and thus effectively become  a mechanistic model, it would need to map 

part-for-part to the underlying system in a direct and systematic way. 

The NM, however, contains no such mapping. While it may be true that the connectivity param-

eters correspond to characteristics of the neural network, this is not enough to be considered a one-one 

mapping of model to mechanism.  What the NM represents is not the components of the underlying 

neural system—e.g. the specific neurons, their specific synaptic properties, the dominant pathways 

among them, etc. (refer to mechanistic explanation given in Section 2)—but rather a few key quantities 

that represent statistical properties of the neural system. The difference here is subtle, but crucial.  The 

total number of nodes, the proportion of total nodes synapsed on, and the proportion of long distance 

connections made are the key parameters that define the NM and that are jointly sufficient to bring 

about or produce the differences seen in neural firing in CA1 and CA3.  These parameters represent sta-

tistical features of the underlying system, and this fact blocks NM from meeting 3M in two ways.  

First, the amount of connectivity in a network is, again, a quantity that characterizes the system, 

and quantities are not ‘parts’ of a mechanism, properly speaking.  Parts of a mechanism are in essence 

the entities doing the activities. When each causally relevant entity in a system (and its associated activi-

ty) are represented in a model that aims to explain a capacity, that model is said to be mechanistic. Re-
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call that Craver’s mechanistic example of a neuron’s capacity to release neurotransmitters makes exten-

sive use of biological entities jostling around in such a way that they give rise to the vesicular release of 

neurotransmitters in a neuron (2007). Contrasting this case with that of the NM, it is at the very least a 

stretch to allow the connectivity parameters to qualify as entities performing activities in the same sort 

of way. Yet this is what is required if NM is to meet the 3M constraint.  

Second, in order for NM to be mechanistic, the relationship between parts in the system and 

parts in the model needs to be direct, i.e. one-to-one. A mechanistic model represents all causally rele-

vant components in a mechanism, their associated activities, and any other organizational features that 

may be important to the mechanism’s operation. To achieve this, the model must represent each 

properly circumscribed part as that part, which requires that no two distinct and causally relevant parts 

in the actual mechanism are lumped together or are otherwise not differentiated in the model of that 

mechanism.  But the mapping from the statistical quantities in the NM to the underlying neural system 

is indirect—any number of different actual underlying neural configurations (that would in fact be caus-

ally responsible for epileptiform behavior in the hippocampus)  might generate the appropriate statisti-

cal quantities that do the explanatory work in the model.  In other words, a variety of actual neural con-

figurations are compatible with a given set of parameter values, which makes the mapping from each 

connectivity parameter to the underlying neural system far more indirect than what mechanistic models 

require—such a mapping does not under any reasonable interpretation qualify as one-to-one. This, in 

combination with the point that quantities are not properly understood as parts, makes it difficult for 

mechanists to argue for the claim that NM meets 3M, and that this might be the reason for its explana-

tory status. 

Even if the NM fails to meet 3M and yet is considered explanatory, mechanists may still object 

that NM is just what Craver would call a ‘mechanism sketch’—i.e. the NM is aiming to fully model a 

mechanism, but falling short. On Craver’s view, a mechanism sketch is a model of a mechanism that is 
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incomplete in the sense that it leaves gaps and employs black boxes or filler terms for entities and pro-

cesses that we do not yet know enough about (2007).  The idea is that as we learn more about the sys-

tem under study, we can flesh out the model, filling in missing details and cashing out black boxes in the 

model. If the NM turns out to be a mechanism sketch, then mechanists can argue that its failure to meet 

3M is a result of its being a mechanism sketch, and that further research will expand the NM into the 

territory of being a complete mechanistic model, in which case it would be capable of meeting 3M. But a 

close look at the NM shows that this cannot be the case. NM does abstract away from many of the de-

tails at the neural level, and it omits mechanistic details that are not relevant to explaining the capacity 

of the CA1 and CA3 to seize and burst. However, it does not employ any filler terms or black boxes; no-

where in the model is a term that is meant to be cashed out once we learn more about the system, and 

the NM has no free parameters either. With respect to its intended explanatory goal, the NM is com-

plete; it contains all and only those parameters crucial to generating the key behavior of the system, and 

it leaves no gaps that might be filled in by future research. Without gaps, black boxes, and filler terms, 

the NM cannot plausibly be considered a mechanism sketch, and so this objection fails to be persuasive. 

What the NM and the above discussion shows is that at least some dynamical models, despite 

being non-mechanistic, and irrespective of whether or not they map to underlying neural mechanisms, 

are able to achieve representational accuracy, evidential support, and answer a range of counterfactuals 

about the phenomena they explain. If such models are able to achieve what mechanistic models can 

when measured against these criteria, there is no reason to think that they cannot be explanatory or 

that mechanisms must be involved in order for them to be explanatory.  

Now, at this point, someone might raise an objection like the following: “It may be true that dy-

namical models are able to explain certain features of a dynamical system, but what explains the dy-

namics of the system itself is going to be some kind of mechanistic story, or at the very least a causal 

explanation involving the components of the system. If there is a causal explanation for the dynamical 
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properties of the system, then anything explained by the dynamical properties will be (in principle) ex-

plainable by the components in the causal explanation, rendering the dynamical properties superfluous 

to any genuine explanation. In other words, if a physical mechanism explains the dynamics, then the 

dynamics cannot in turn do any explanatory work, or if they do, it is only because they provide a conven-

ient shorthand for what is actually going on at the physical level. The dynamical explanation does not 

stand on its own.” 

I see this objection as closely related to issues regarding the autonomy of special science expla-

nations, and more generally, to questions about the transitivity of explanation.
12

 It seems that mecha-

nists want to say that if a mechanistic model explains the occurrence of some phenomenon, then a dy-

namical model of the same phenomenon cannot in turn be explanatory, in large part because the mech-

anistic model presumably explains why the phenomenon has the dynamics that it does. In other words, 

the claim seems to be that if A explains B (i.e. the mechanism explains the dynamics), then B is not or 

cannot be explanatory. 

There is no reason to think that explanation is a transitive relation, because often what does the 

explanatory work are factors that are highly contextual, as mechanists are ready to admit. If A explains 

B, and B explains C, there is no a priori reason to assume that the context of A and the context of C are 

similar enough for A to be an adequate explanation of C. The very existence of the special sciences 

speaks to the autonomy of macro-level explanation (Fodor 1974), and we ought not automatically as-

sume that because physical mechanisms explain the dynamics of a system, that those physical mecha-

nisms themselves can explain a particular bifurcation, phase transition, or other dynamical phenome-

non. Any mechanist who claims that because the mechanism explains the dynamics, the dynamics can-

not in turn be explanatory opens herself up to the same criticism—namely, that since certain regularities 
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 Thanks to Dan Weiskopf for directing my attention to this point; and also to Elliot Sober, who later pointed out 

to me the absence of a proper discussion of this issue. 
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in the world may explain the existence of mechanisms, mechanisms themselves would not be explana-

tory. 

Dynamical models, like the NM model discussed above, often will omit lots of detail in exchange 

for understanding what the crucial variables in a system are, but this need not detract from the accuracy 

with which they may represent the phenomena they target. Such models will also often have a high de-

gree of evidential support, as did the Hodgkin and Huxley model when it was originally proposed. And 

since dynamical models track change over time, whether that change is continuous or discrete, they 

provide a wealth of information about what would happen if things had been different. The details of 

dynamical explanation remain to be fleshed out on another occasion, but the above discussion should 

prod us into taking a closer look at dynamical models and the explanatory potential they have to offer. 
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5 CONCLUSION 

In the biological sciences, the phenomena under study tend to be the behavior of complex sys-

tems with fairly structured internal organizations (often hierarchically organized, spatially and temporal-

ly) and full of autonomous or semi-autonomous sub-components, each with their own relevant process-

es, etc. Mechanistic models are indispensible in getting explanations of biological phenomena off the 

ground, and often the assumptions made in dynamical models depend crucially on details gleaned from 

a mechanistic understanding of the relevant processes. But when we want to know more about a sys-

tem, how differences in the amount and rates of change in the various entities and activities contribute 

to the occurrence of the overall phenomenon, dynamical models can provide deep insights into the 

structure of a system and how it evolves through time. To belabor points about needing a mapping to 

exist for a dynamical model to be explanatory is to misunderstand what dynamical models are attempt-

ing to explain and how they contribute to an overall understanding of the phenomena under study. By 

trying to make dynamical models into mechanistic models,  some mechanists miss the unique infor-

mation dynamical models provide and conflate the explanatory targets of these two kinds of models. I 

have argued herein that dynamical models can sometimes be explanatory, in virtue of the fact that they 

meet all the norms for explanatory models that mechanistic models do.   

I do not want to suggest that dynamical models are superior to mechanistic models or that 

mechanistic models are overrated. On the contrary, it seems clear that science benefits most from a rich 

interaction between both kinds of models, each providing separate but unique explanatory information 

that, when taken together, gives scientists the deepest possible understanding of the phenomena they 

seek to explain.  
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