We consider a system of N particles with a stochastic dynamics introduced by
Brunet and Derrida. The particles can be interpreted as last passage times in
directed percolation on {1,...,N} of mean-field type. The particles remain
grouped and move like a traveling wave, subject to discretization and driven by
a random noise. As N increases, we obtain estimates for the speed of the front
and its profile, for different laws of the driving noise. The Gumbel
distribution plays a central role for the particle jumps, and we show that the
scaling limit is a L\'evy process in this case. The case of bounded jumps
yields a completely different behavior