460 research outputs found

    Geologic setting of serpentine deposits on Mars

    Get PDF
    Serpentine, recently discovered on Mars using Mars Reconnaissance Orbiter data, is uncommon but found in three geologic settings: (1) in mélange terrains at the Claritas Rise and the Nili Fossae, (2) associated with a few southern highlands impact craters, and (3) associated with a regional olivine-rich stratigraphic unit near the Isidis basin. Any presently active serpentinization processes would be occurring beneath the surface and mineral products would not be apparent with surface and orbital data; however, finding serpentine in several Noachian terrains indicates active serpentinization processes in Mars' past. Important implications are the past production of magnetite, which may contribute to chemical remnant magnetization of Mars' crust, and production of H_2, which is a suitable energy source for chemosynthetic microbial life

    Spectrally distinct ejecta in Syrtis Major, Mars: Evidence for environmental change at the Hesperian-Amazonian boundary

    Get PDF
    Analysis of visible and near-infrared (VNIR) imaging spectrometer data of the Syrtis Major volcanic complex on Mars shows spectrally distinct ejecta (SDE) around a subset of the region's impact craters. We explore the nature of this spectral difference with the intention of constraining the physical cause of the distinction and the significance of their near random spatial distribution. Crater counting performed by Baratoux et al. (2007) indicated that the craters with SDE are systematically younger than craters without SDE. Extensive crater counts of the craters with SDE show that they fit a consistent Hartmann (2005) isochron indicting that they represent temporally continuous population. This population was dated near 2 Ga, consistent with the counts of Baratoux et al. (2007). This modeled age corresponds to just after the Hesperian-Amazonian boundary, indicating that it may be related to a global event. We explore possible explanations for the lack of SDE around older craters, including atmospheric changes, significant but brief regional emplacement of materials, and volcanic activity. We conclude that the preferred explanation is that the SDE represent the true composition of the Syrtis Major volcanics and that surfaces older than 2 Ga were altered by interactions with water vapor or volcanic gases under different Hesperian climatic and atmospheric conditions leading to all craters formed after this alteration event to display SDE

    Challenges in the Search for Perchlorate and Other Hydrated Minerals With 2.1-ÎĽm Absorptions on Mars

    Get PDF
    A previously unidentified artifact has been found in Compact Reconnaissance Imaging Spectrometer for Mars targeted I/F data. It exists in a small fraction (<0.05%) of pixels within 90% of images investigated and occurs in regions of high spectral/spatial variance. This artifact mimics real mineral absorptions in width and depth and occurs most often at 1.9 and 2.1 μm, thus interfering in the search for some mineral phases, including alunite, kieserite, serpentine, and perchlorate. A filtering step in the data processing pipeline, between radiance and I/F versions of the data, convolves narrow artifacts (“spikes”) with real atmospheric absorptions in these wavelength regions to create spurious absorption-like features. The majority of previous orbital detections of alunite, kieserite, and serpentine we investigated can be confirmed using radiance and raw data, but few to none of the perchlorate detections reported in published literature remain robust over the 1.0- to 2.65-μm wavelength range

    Chemical Gardens Under Mars Conditions: Imaging Chemical Garden Growth In Situ in an Environmental Scanning Electron Microscope

    Get PDF
    The authors acknowledge funding from Spanish MINCINN project grant FIS2016-77692-C2-2P along with European FEDER funds the European COST Action CA17120 supported by the EU Framework Programme Horizon 2020, and the PCIN-2017-098 project.We have performed and visualized chemical garden growth experiments directly in situ in an environmental scanning electron microscope. The microscope chamber simulates the surface of Mars. We demonstrate that chemical gardens can form under the conditions of temperature and pressure existing on Mars in the presence of liquid water, silicates, and metal salts. Using chemical gardens from aluminum salts, tubes were formed where the external surface is formed principally by silicate and the inner surface is predominantly aluminum oxide-hydroxide. It should thus be expected that similar growths of metal salts may be found in geological explorations of water-rich environments during the search for life on Mars.Spanish MINCINN project FIS2016-77692-C2-2PEuropean FEDER funds the European COST Action by the EU Framework Programme Horizon 2020 CA17120 PCIN-2017-09

    Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and protein concentration in Indian wheat cultivars

    Get PDF
    © 2020 The Authors Nitrogen (N) fertilizer represents a significant cost for the grower and may also have environmental impacts through nitrate leaching and N2O (a greenhouse gas) emissions associated with denitrification. The objectives of this study were to quantify the genetic variability in N partitioning and N remobilization in Indian spring wheat cultivars and identify traits for improved grain yield and grain protein content for application in breeding N-efficient cultivars. Twenty-eight bread wheat cultivars and two durum wheat cultivars were tested in field experiments in two years in Maharashtra, India. Growth analysis was conducted at anthesis and harvest to assess above-ground dry matter (DM) and dry matter and N partitioning. Flag-leaf photosynthesis rate (Amax), flag-leaf senescence rate and canopy normalized difference vegetation index (NDVI) were also assessed. Significant N × genotype level interaction was observed for grain yield and N-use efficiency. There was a positive linear association between post-anthesis flag-leaf Amax and grain yield amongst the 30 genotypes under high N (HN) conditions. Flag-leaf Amax was positively associated with N uptake at anthesis (AGNA). Under both HN and low N (LN) conditions, higher N uptake at anthesis was associated with delayed onset of flag-leaf senescence and higher grain yield. Under N limitation, there was a genetic negative correlation between grain yield and grain protein concentration. Deviation from this negative relationship (grain protein deviation or GPD) was related to genotypic differences in post-anthesis N uptake. It is concluded that N uptake at anthesis was an important determinant of flag-leaf photosynthesis rate and grain yield under high N conditions; while post-anthesis N uptake was an important determinant of GPD of wheat grown under low to moderate N conditions in India

    Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice

    Get PDF
    High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice) to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity

    Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin

    Get PDF
    Definitive exposures of pristine, ancient crust on Mars are rare, and the finding that much of the ancient Noachian terrain on Mars exhibits evidence of phyllosilicate alteration adds further complexity. We have analyzed high-resolution data from the Mars Reconnaissance Orbiter in the well-exposed Noachian crust surrounding the Isidis basin. We focus on data from the Compact Reconnaissance Imaging Spectrometer for Mars as well as imaging data sets from High Resolution Imagine Science Experiment and Context Imager. These data show the lowermost unit of Noachian crust in this region is a complex, brecciated unit of diverse compositions. Breccia blocks consisting of unaltered mafic rocks together with rocks showing signatures of Fe/Mg-phyllosilicates are commonly observed. In regions of good exposure, layered or banded phyllosilicate-bearing breccia rocks are observed suggestive of pre-Isidis sedimentary deposits. In places, the phyllosilicate-bearing material appears as a matrix surrounding mafic blocks, and the mafic rocks show evidence of complex folded relationships possibly formed in the turbulent flow during emplacement of basin-scale ejecta. These materials likely include both pre-Isidis basement rocks as well as the brecciated products of the Isidis basin–forming event at 3.9 Ga. A banded olivine unit capped by a mafic unit covers a large topographic and geographic range from northwest of Nili Fossae to the southern edge of the Isidis basin. This olivine-mafic cap combination superimposes the phyllosilicate-bearing basement rocks and distinctly conforms to the underlying basement topography. This may be due to draping of the topography by a fluid or tectonic deformation of a previously flatter lying morphology. We interpret the draping, superposed olivine-mafic cap combination to be impact melt from the Isidis basin–forming event. While some distinct post-Isidis alteration is evident (carbonate, kaolinite, and serpentine), the persistence of olivine from the time of Isidis basin suggests that large-scale aqueous alteration processes had ceased by the time this unit was emplaced

    A Mercury Lander Mission Concept Study for the Next Decadal Survey

    Get PDF
    Mariner 10 provided our first closeup reconnaissance of Mercury during its three flybys in 1974 and 1975. MESSENGERs 20112015 orbital investigation enabled numerous discoveries, several of which led to substantial or complete changes in our fundamental understanding of the planet. Among these were the unanticipated, widespread presence of volatile elements (e.g., Na, K, S); a surface with extremely low Fe abundance whose darkening agent is likely C; a previously unknown landformhollows that may form by volatile sublimation from within rocks exposed to the harsh conditions on the surface; a history of expansive effusive and explosive volcanism; substantial radial contraction of the planet from interior cooling; offset of the dipole moment of the internal magnetic field northward from the geographic equator by ~20% of the planets radius; crustal magnetization, attributed at least in part to an ancient field; unexpected seasonal variability and relationships among exospheric species and processes; and the presence in permanently shadowed polar terrain of water ice and other volatile materials, likely to include complex organic compounds. Mercurys highly chemically reduced and unexpectedly volatile-rich composition is unique among the terrestrial planets and was not predicted by earlier hypotheses for the planets origin. As an end-member of terrestrial planet formation, Mercury holds unique clues about the original distribution of elements in the earliest stages of the Solar System and how planets (and exoplanets) form and evolve in close proximity to their host stars. The BepiColombo mission promises to expand our knowledge of this planet and to shed light on some of the mysteries revealed by the MESSENGER mission. However, several fundamental science questions raised by MESSENGERs pioneering exploration of Mercury can only be answered with in situ measurements from the planets surface
    • …
    corecore