81 research outputs found

    Nitrogen fixation in the upwelling region off NW Iberia

    Get PDF
    Comunicación oralPicoplankton are the most abundant organisms in the ocean, often dominate planktonic biomass and primary production, and they could represent a substantial contribution to the global export of carbon. Nowadays, we have a limited understanding about the factors that control the picoplankton community structure. A recent analysis indicates that light and temperature are the main factors explaining Prochlorococcus and Synechococcus distributions, whereas nutrient concentrations play a minor role (Flombaum et al., PNAS 2013). Methodological difficulties to quantify mixing in the marine enviroments have motivated the use of indirect approaches to determine the input of nutrients into the euphotic zone, however, nutrient concentrations are not necessarily a proxy of nutrient supply. We present a large data set, including open-ocean and coastal regions, of simultaneous measurements of picoplankton abundance, temperature and irradiance, together with estimates of nutrient supply. The transport of nutrients across the nutricline was computed combining nutrient concentrations and small-scale turbulence observations collected with a microstructure profiler. Our preliminary results indicate that nutrient supply also plays a role in the distribution of functional groups of picoplankton in the ocean

    Short term variability of bacterial communities in the shelf waters off Galicia (NW Iberian Peninsula): Patterns and drivers shaping the diversity

    Get PDF
    PósterEcological and biogeochemical processesEcological and biogeochemical processes in the ocean are dependent on a diverse assemblage of microbes, including members of Bacteria (Glöckner et al, 2012). These bacterial assemblages occurs in vast numbers and represent a huge genetic diversity, fulfilling a wide of ecological roles in the marine system such as carbon geochemical cycle and energy transfer into higher trophic levels.We combined flow cytometry, CARD-FISH and 16S rRNA gene tag pyrosequencing to investigate the short-term variability of the bacterial communities in samples collected along a transect in the shelf off NW Iberian Peninsula over one week

    Importance of N2 fixation vs. nitrate diffusion along a latitudinal transect in the Atlantic Ocean

    Get PDF
    We present ocean, basin-scale simultaneous measurements of N2-fixation, nitrate diffusion, and primary production along a south–north transect in the Atlantic Ocean crossing three biogeographic provinces: the south subtropical Atlantic (SSA; , 31uS–12uS), the equatorial Atlantic (EA; , 12uS–16uN), and the north subtropical Atlantic (NSA, , 16uN–9uN) in April–May 2008. N2-fixation and primary production were measured as 15N2 and 14C uptake, respectively. Dissipation rates of turbulent kinetic energy (e) were measured with a microstructure profiler. The vertical input of nitrate through eddy diffusion was calculated from the product of diffusivity, derived from e, and the gradient of nanomolar nitrate concentration across the base of the euphotic zone. The mean N2-fixation rate in EA was 56 6 49 mmol N m22 d21, whereas SSA and NSA had much lower values (, 10 mmol N m22 d21). Because of the large spatial variability in nitrate diffusion (34 6 50, 405 6 888, and 844 6 1258 mmol N m22 d21 in SSA, EA, and NSA, respectively), the contribution of N2-fixation to new production in the SSA, EA, and NSA was 44% 6 30%, 22% 6 19%, and 2% 6 2%, respectively. The differences between SSA and NSA in the contribution of N2 fixation were partly due to the contrasting seasonal forcing in each hemisphere, which likely affected both N2 fixation rates and vertical nitrate diffusion. The variability in the nitrogen budget of the Atlantic subtropical gyres was unexpectedly high and largely uncoupled from relatively constant phytoplankton standing stocks and primary production rates.CTM2004-05174-C02 CTM2007-28295-E/MAR Programa I. Parga-Ponda

    Changes in community assemblages during the development of a thin layer of phytoplankton (TLP)

    Get PDF
    ASLO 2021 Aquatic Sciences Meeting, 22–27 June, VirtualHigh resolution measurements of phytoplankton (from pico- to mesoplankton) and physicochemical parameters were made from 2 to 14 July, 2018 in a coastal embayment (Ría de Pontevedra, NW Spain). The main objective of this work was to study changes in phytoplankton community structure during the development of a phytoplankton thin layer. The observational approach highlighted the role of short term changes of abiotic and biotic habitat conditions in the dynamics of phytoplankton assemblages. During relaxation conditions in the beginning of the cruise, small rounded dinoWagellates Alexandrium minutum (PSP toxins) and Scrippsiella cf. dominated. Then, during the transition from downwelling to upwelling conditions, a thin layer was formed, composed of Pseudo-Nitzschia spp (ASP toxins) and Leptocylindrus danicus. Fine spatial (cm-m) and temporal (hours-days) scale measurements were carried out. A combination of traditional microscopy analysis (279 samples analyzed at species level when possible) and imaging-in-Wow technique for morphometric characterization (280 samples generating about 480000 raw images, containing plankton, detritus and mineral particles) allowed us to assess the effect of the environmental =ltering on phytoplankton morphological and functional traits. The dynamics of co-occurring populations of Pseudo-nitzschia spp and Alexandrium minutum was considered in the frame of changing habitat conditionsThis study was funded by project REMEDIOS (CTM2016-75451-C2-2-R).N

    Short-term variability in the activity and composition of the diazotroph community in a coastal upwelling system

    Get PDF
    Today we know that diazotrophs are common and active in nitrogen (N) replete regions, however the factors controlling their distribution remain elusive. Previous studies in upwelling regions revealed that the composition of diazotrophs responded to changes in hydrodynamic forcing over seasonal scales. Here we used high-frequency observations collected during a 3-week cruise in the upwelling region off NW Iberia to describe changes in the activity and composition of diazotrophs over shorter temporal scales. The cruise started after a strong upwelling event followed by a few days of relaxation-downwelling, and soon after another upwelling pulse. Higher N2 fixation rates (2.2 ± 0.7 µmol m-3 d-1) were measured during relaxation-downwelling, when surface nitrate concentration was low. During the fertilization associated with the upwelling, N2 fixation dramatically decreased to 0.10 ± 0.09 µmol m-3 d-1. The comparison with nitrate consumption and diffusion confirmed the minor role of N2 fixation (<1%) as a source of new N for primary production. The unicellular cyanobacterium UCYN-A2 was the dominant diazotroph during the cruise. UCYN-A2 abundance was four times higher during relaxation-downwelling (4x104 copies L-1) compared to upwelling conditions (0.2x104 copies L-1), when the unusual Epsilonproteobacteria increased their relative abundance. These results indicate that diazotrophs can respond rapidly to changes in the environment, and point out to the availability of N as a key factor controlling the activity, composition and distribution of diazotrophs in eutrophic regions

    Major role of nutrient supply in the control of picophytoplankton community structure.

    Get PDF
    abstractThe Margalef´s mandala (1978) is a simplified bottom-up control model that explains how mixing and nutrient concentration determine the composition of marine phytoplankton communities. Due to the difficulties of measuring turbulence in the field, previous attempts to verify this model have applied different proxies for nutrient supply, and very often used interchangeably the terms mixing and stratification. Moreover, because the mandala was conceived before the discovery of smaller phytoplankton groups (picoplankton <2 μm), it describes only the succession of vegetative phases of microplankton. In order to test the applicability of the classical mandala to picoplankton groups, we used a multidisciplinary approach including specifically designed field observations supported by remote sensing, database analyses, and modeling and laboratory chemostat experiments. Simultaneous estimates of nitrate diffusive fluxes, derived from microturbulence observations, and picoplankton abundance collected in more than 200 stations, spanning widely different hydrographic regimes, showed that the contribution of eukaryotes to picoautotrophic biomass increases with nutrient supply, whereas that of picocyanobacteria shows the opposite trend. These findings were supported by laboratory and modeling chemostat experiments that reproduced the competitive dynamics between picoeukaryote sand picocyanobacteria as a function of changing nutrient supply. Our results indicate that nutrient supply controls the distribution of picoplankton functional groups in the ocean, further supporting the model proposed by Margalef.RADIALES (IEO

    Control of tHe structure of marine phytoplAnkton cOmmunities by turbulence and nutrient supply dynamicS (CHAOS)

    Get PDF
    extended abstract del posterIn order to investigate the role of turbulence mixing on structuring marine phytoplankton communities, the CHAOS project included a multidisciplinary approach involving specifically designed field observations supported by remote sensing, database analyses, and modeling and laboratory chemostat experiments. Field observations carried out in the outer part of Ría de Vigo in summer 2013 showed that, as a result of increased mixing levels, nitrate diffusive input into the euphotic layer was approximately 4-fold higher during spring tides. This nitrate supply could contribute to explain the continuous dominance of large-sized phytoplankton during the upwelling favorable season. Simultaneous estimates of nitrate diffusive fluxes, derived from microturbulence observations, and picoplankton abundance collected in more than 100 stations, spanning widely different hydrographic regimes, showed that the contribution of eukaryotes to picoautotrophic biomass increases with nutrient supply, whereas that of picocyanobacteria shows the opposite trend. These findings were supported by laboratory and modeling chemostat experiments that reproduced the competitive dynamics between picoeukaryote and picocyanobacteria as a function of changing nutrient supply. The results derived from this project confirm that turbulence and mixing control the availability of light and nutrients, which in turn determine the structure of marine phytoplankton communities.RADIALES-20 (IEO), CHAOS (CTM 2012-30680), Malaspina-2010(CSD2008-00077

    Nutrient supply does play a role on the structure of marine picophytoplankton communities

    Get PDF
    Conference communicationThe Margalef´s mandala (1978) is a simplified bottom-up control model that explains how mixing and nutrient concentration determine the composition of marine phytoplankton communities. Due to the difficulties of measuring turbulence in the field, previous attempts to verify this model have applied different proxies for nutrient supply, and very often used interchangeably the terms mixing and stratification. Moreover, because the mandala was conceived before the discovery of smaller phytoplankton groups (picoplankton <2 µm), it describes only the succession of vegetative phases of microplankton. In order to test the applicability of the classical mandala to picoplankton groups, we used a multidisciplinary approach including specifically designed field observations supported by remote sensing, database analyses, and modeling and laboratory chemostat experiments. Simultaneous estimates of nitrate diffusive fluxes, derived from microturbulence observations, and picoplankton abundance collected in more than 200 stations, spanning widely different hydrographic regimes, showed that the contribution of eukaryotes to picoautotrophic biomass increases with nutrient supply, whereas that of picocyanobacteria shows the opposite trend. These findings were supported by laboratory and modeling chemostat experiments that reproduced the competitive dynamics between picoeukaryote sand picocyanobacteria as a function of changing nutrient supply. Our results indicate that nutrient supply controls the distribution of picoplankton functional groups in the ocean, further supporting the model proposed by Margalef.Spanish Governmen

    Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.

    Get PDF
    The input of new nitrogen into the euphotic zone constrains the export of organic carbon to the deep ocean and thereby the biologically mediated long-term CO2 exchange between the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate diffusion from the ocean’s interior and biological fixation of atmospheric N2 are the main sources of new nitrogen for phytoplankton productivity. With measurements across the tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion (171±190 mmolm 2 d 1) dominates over N2 fixation (9.0±9.4 mmolm 2 d 1) at the time of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate that salt finger diffusion should be considered in present and future ocean nitrogen budgets, as it could supply globally 0.23–1.00 TmolNyr 1 to the euphotic zone.MALASPINA (CSD2008-00077)Versión del editor10,015

    Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Get PDF
    Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr?1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr?1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851)
    corecore