83 research outputs found
Isospin breaking in the vector current of the nucleon
Extraction of the nucleon's strange form factors from experimental data
requires a quantitative understanding of the unavoidable contamination from
isospin violation. A number of authors have addressed this issue during the
past decade, and their work is reviewed here. The predictions from early models
are largely consistent with recent results that rely as much as possible on
input from QCD symmetries and related experimental data. The resulting bounds
on isospin violation are sufficiently precise to be of value to on-going
experimental and theoretical studies of the nucleon's strange form factors.Comment: 5 pages, 3 figures. Presented at the International Workshop "From
Parity Violation to Hadronic Structure and more...", Milos, Greece, 16-20 May
2006. Version 2 is only to update Refs. [21] and [25
Invariant Amplitudes for Pion Electroproduction
The invariant amplitudes for pion electroproduction on the nucleon are
evaluated by dispersion relations at constant t with MAID as input for the
imaginary parts of these amplitudes. In the threshold region these amplitudes
are confronted with the predictions of several low-energy theorems derived in
the soft-pion limit. In general agreement with Chiral Perturbation Theory, the
dispersive approach yields large corrections to these theorems because of the
finite pion mass.Comment: 18 pages, 8 figure
The size of the proton - closing in on the radius puzzle
We analyze the recent electron-proton scattering data from Mainz using a
dispersive framework that respects the constraints from analyticity and
unitarity on the nucleon structure. We also perform a continued fraction
analysis of these data. We find a small electric proton charge radius, r_E^p =
0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic
hydrogen measurements and earlier dispersive analyses. We also extract the
proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with
earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on
continued fractions modified, conclusions on the proton charge radius
unchanged, version accepted for publication in European Physical Journal
Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order
We calculate the imaginary parts of the isoscalar scalar and isovector
electromagnetic form factors of the nucleon up to two-loop order in chiral
perturbation theory. Particular attention is paid on the correct behavior of Im
and Im at the two-pion threshold
in connection with the non-relativistic 1/M-expansion. We recover the
well-known strong enhancement near threshold originating from the nearby
anomalous singularity at . In the
case of the scalar spectral function Im one finds a significant
improvement in comparison to the lowest order one-loop result. Higher order
-rescattering effects are however still necessary to close a remaining
20%-gap to the empirical scalar spectral function. The isovector electric and
magnetic spectral functions Im get additionally enhanced near
threshold by the two-pion-loop contributions. After supplementing their
two-loop results by a phenomenological -meson exchange term one can
reproduce the empirical isovector electric and magnetic spectral functions
fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review
Spin-Dependent Twist-Four Matrix Elements from g_1 Data in the Resonance Region
Matrix elements of spin-dependent twist-four operators are extracted from
recent data on the spin-dependent g_1 structure function of the proton and
deuteron in the resonance region. We emphasize the need to include the elastic
contributions to the first moments of the structure functions at Q^2 < 2 GeV^2.
The coefficients of the 1/Q^2 corrections to the Ellis-Jaffe sum rules are
found to be 0.04 \pm 0.02 and 0.03 \pm 0.04 GeV^2 for the proton and neutron,
respectively.Comment: 10 pages REVTeX, 4 figure
Local Duality Predictions for x ~ 1 Structure Functions
Recent data on the proton F_2 structure function in the resonance region
suggest that local quark-hadron duality works remarkably well for each of the
low-lying resonances, including the elastic, to rather low values of Q^2. We
derive model-independent relations between structure functions at x ~ 1 and
elastic electromagnetic form factors, and predict the x -> 1 behavior of
nucleon polarization asymmetries and the neutron to proton structure function
ratios from available data on nucleon electric and magnetic form factors.Comment: 10 pages, 2 figures, typos in Eq. (2) correcte
A new measurement of the structure functions and in virtual Compton scattering at 0.33 (GeV/c)
The cross section of the reaction has been measured at
(GeV/c). The experiment was performed using the electron beam
of the MAMI accelerator and the standard detector setup of the A1
Collaboration. The cross section is analyzed using the low-energy theorem for
virtual Compton scattering, yielding a new determination of the two structure
functions P_LL}-P_{TT}/epsilon and which are linear combinations of
the generalized polarizabilities of the proton. We find somewhat larger values
than in the previous investigation at the same . This difference, however,
is purely due to our more refined analysis of the data. The results tend to
confirm the non-trivial -evolution of the generalized polarizabilities and
call for more measurements in the low- region ( 1 (GeV/c)).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and
figure
Baryon Charge Radii and Quadrupole Moments in the 1/N_c Expansion: The 3-Flavor Case
We develop a straightforward method to compute charge radii and quadrupole
moments for baryons both with and without strangeness, when the number of QCD
color charges is N_c. The minimal assumption of the single-photon exchange
ansatz implies that only two operators are required to describe these baryon
observables. Our results are presented so that SU(3) flavor and isospin
symmetry breaking can be introduced according to any desired specification,
although we also present results obtained from two patterns suggested by the
quark model with gluon exchange interactions. The method also permits to
extract a number of model-independent relations; a sample is r^2_Lambda / r_n^2
= 3/(N_c+3), independent of SU(3) symmetry breaking.Comment: 30 pages, no figures, REVTeX
Point-Form Analysis of Elastic Deuteron Form Factors
Point-form relativistic quantum mechanics is applied to elastic
electron-deuteron scattering. The deuteron is modeled using relativistic
interactions that are scattering-equivalent to the nonrelativistic Argonne
and Reid '93 interactions. A point-form spectator approximation (PFSA)
is introduced to define a conserved covariant current in terms of
single-nucleon form factors. The PFSA is shown to provide an accurate
description of data up to momentum transfers of 0.5 , but falls
below the data at higher momentum transfers. Results are sensitive to the
nucleon form factor parameterization chosen, particularly to the neutron
electric form factor.Comment: RevTex, 31 pages, 1 table, 13 figure
Leading and higher twists in the proton polarized structure function at large Bjorken x
A phenomenological parameterization of the proton polarized structure
function has been developed for x > 0.02 using deep inelastic data up to ~ 50
(GeV/c)**2 as well as available experimental results on both photo- and
electro-production of proton resonances. According to the new parameterization
the generalized Drell-Hearn-Gerasimov sum rule is predicted to have a
zero-crossing point at Q**2 = 0.16 +/- 0.04 (GeV/c)**2. Then, low-order
polarized Nachtmann moments have been estimated and their Q**2-behavior has
been investigated in terms of leading and higher twists for Q**2 > 1
(GeV/c)**2. The leading twist has been treated at NLO in the strong coupling
constant and the effects of higher orders of the perturbative series have been
estimated using soft-gluon resummation techniques. In case of the first moment
higher-twist effects are found to be quite small for Q**2 > 1 (GeV/c)**2, and
the singlet axial charge has been determined to be a0[10 (GeV/c)**2] = 0.16 +/-
0.09. In case of higher order moments, which are sensitive to the large-x
region, higher-twist effects are significantly reduced by the introduction of
soft gluon contributions, but they are still relevant at Q**2 ~ few (GeV/c)**2
at variance with the case of the unpolarized transverse structure function of
the proton. Our finding suggests that spin-dependent correlations among partons
may have more impact than spin-independent ones. As a byproduct, it is also
shown that the Bloom-Gilman local duality is strongly violated in the region of
polarized electroproduction of the Delta(1232) resonance.Comment: revised version to appear in Phys. Rev. D; extended discussion on the
generalized DHG sum rul
- …
