83 research outputs found

    Isospin breaking in the vector current of the nucleon

    Get PDF
    Extraction of the nucleon's strange form factors from experimental data requires a quantitative understanding of the unavoidable contamination from isospin violation. A number of authors have addressed this issue during the past decade, and their work is reviewed here. The predictions from early models are largely consistent with recent results that rely as much as possible on input from QCD symmetries and related experimental data. The resulting bounds on isospin violation are sufficiently precise to be of value to on-going experimental and theoretical studies of the nucleon's strange form factors.Comment: 5 pages, 3 figures. Presented at the International Workshop "From Parity Violation to Hadronic Structure and more...", Milos, Greece, 16-20 May 2006. Version 2 is only to update Refs. [21] and [25

    Invariant Amplitudes for Pion Electroproduction

    Full text link
    The invariant amplitudes for pion electroproduction on the nucleon are evaluated by dispersion relations at constant t with MAID as input for the imaginary parts of these amplitudes. In the threshold region these amplitudes are confronted with the predictions of several low-energy theorems derived in the soft-pion limit. In general agreement with Chiral Perturbation Theory, the dispersive approach yields large corrections to these theorems because of the finite pion mass.Comment: 18 pages, 8 figure

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal

    Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order

    Get PDF
    We calculate the imaginary parts of the isoscalar scalar and isovector electromagnetic form factors of the nucleon up to two-loop order in chiral perturbation theory. Particular attention is paid on the correct behavior of Im σN(t)\sigma_N(t) and Im GE,MV(t)G_{E,M}^V(t) at the two-pion threshold t0=4mπ2t_0=4 m_\pi^2 in connection with the non-relativistic 1/M-expansion. We recover the well-known strong enhancement near threshold originating from the nearby anomalous singularity at tc=4mπ2mπ4/M2=3.98mπ2t_c = 4m_\pi^2-m_\pi^4/M^2 = 3.98 m_\pi^2. In the case of the scalar spectral function Im σN(t)\sigma_N(t) one finds a significant improvement in comparison to the lowest order one-loop result. Higher order ππ\pi\pi-rescattering effects are however still necessary to close a remaining 20%-gap to the empirical scalar spectral function. The isovector electric and magnetic spectral functions Im GE,MV(t)G_{E,M}^V(t) get additionally enhanced near threshold by the two-pion-loop contributions. After supplementing their two-loop results by a phenomenological ρ\rho-meson exchange term one can reproduce the empirical isovector electric and magnetic spectral functions fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review

    Spin-Dependent Twist-Four Matrix Elements from g_1 Data in the Resonance Region

    Get PDF
    Matrix elements of spin-dependent twist-four operators are extracted from recent data on the spin-dependent g_1 structure function of the proton and deuteron in the resonance region. We emphasize the need to include the elastic contributions to the first moments of the structure functions at Q^2 < 2 GeV^2. The coefficients of the 1/Q^2 corrections to the Ellis-Jaffe sum rules are found to be 0.04 \pm 0.02 and 0.03 \pm 0.04 GeV^2 for the proton and neutron, respectively.Comment: 10 pages REVTeX, 4 figure

    Local Duality Predictions for x ~ 1 Structure Functions

    Get PDF
    Recent data on the proton F_2 structure function in the resonance region suggest that local quark-hadron duality works remarkably well for each of the low-lying resonances, including the elastic, to rather low values of Q^2. We derive model-independent relations between structure functions at x ~ 1 and elastic electromagnetic form factors, and predict the x -> 1 behavior of nucleon polarization asymmetries and the neutron to proton structure function ratios from available data on nucleon electric and magnetic form factors.Comment: 10 pages, 2 figures, typos in Eq. (2) correcte

    A new measurement of the structure functions PLLPTT/epsilonP_{LL}-P_{TT}/epsilon and PLTP_{LT} in virtual Compton scattering at Q2=Q^2= 0.33 (GeV/c)2^2

    Full text link
    The cross section of the epepγep \to e' p' \gamma reaction has been measured at Q2=0.33Q^2 = 0.33 (GeV/c)2^2. The experiment was performed using the electron beam of the MAMI accelerator and the standard detector setup of the A1 Collaboration. The cross section is analyzed using the low-energy theorem for virtual Compton scattering, yielding a new determination of the two structure functions P_LL}-P_{TT}/epsilon and PLTP_{LT} which are linear combinations of the generalized polarizabilities of the proton. We find somewhat larger values than in the previous investigation at the same Q2Q^2. This difference, however, is purely due to our more refined analysis of the data. The results tend to confirm the non-trivial Q2Q^2-evolution of the generalized polarizabilities and call for more measurements in the low-Q2Q^2 region (\le 1 (GeV/c)2^2).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and figure

    Baryon Charge Radii and Quadrupole Moments in the 1/N_c Expansion: The 3-Flavor Case

    Full text link
    We develop a straightforward method to compute charge radii and quadrupole moments for baryons both with and without strangeness, when the number of QCD color charges is N_c. The minimal assumption of the single-photon exchange ansatz implies that only two operators are required to describe these baryon observables. Our results are presented so that SU(3) flavor and isospin symmetry breaking can be introduced according to any desired specification, although we also present results obtained from two patterns suggested by the quark model with gluon exchange interactions. The method also permits to extract a number of model-independent relations; a sample is r^2_Lambda / r_n^2 = 3/(N_c+3), independent of SU(3) symmetry breaking.Comment: 30 pages, no figures, REVTeX

    Point-Form Analysis of Elastic Deuteron Form Factors

    Full text link
    Point-form relativistic quantum mechanics is applied to elastic electron-deuteron scattering. The deuteron is modeled using relativistic interactions that are scattering-equivalent to the nonrelativistic Argonne v18v_{18} and Reid '93 interactions. A point-form spectator approximation (PFSA) is introduced to define a conserved covariant current in terms of single-nucleon form factors. The PFSA is shown to provide an accurate description of data up to momentum transfers of 0.5 GeV2{\rm GeV}^2, but falls below the data at higher momentum transfers. Results are sensitive to the nucleon form factor parameterization chosen, particularly to the neutron electric form factor.Comment: RevTex, 31 pages, 1 table, 13 figure

    Leading and higher twists in the proton polarized structure function at large Bjorken x

    Get PDF
    A phenomenological parameterization of the proton polarized structure function has been developed for x > 0.02 using deep inelastic data up to ~ 50 (GeV/c)**2 as well as available experimental results on both photo- and electro-production of proton resonances. According to the new parameterization the generalized Drell-Hearn-Gerasimov sum rule is predicted to have a zero-crossing point at Q**2 = 0.16 +/- 0.04 (GeV/c)**2. Then, low-order polarized Nachtmann moments have been estimated and their Q**2-behavior has been investigated in terms of leading and higher twists for Q**2 > 1 (GeV/c)**2. The leading twist has been treated at NLO in the strong coupling constant and the effects of higher orders of the perturbative series have been estimated using soft-gluon resummation techniques. In case of the first moment higher-twist effects are found to be quite small for Q**2 > 1 (GeV/c)**2, and the singlet axial charge has been determined to be a0[10 (GeV/c)**2] = 0.16 +/- 0.09. In case of higher order moments, which are sensitive to the large-x region, higher-twist effects are significantly reduced by the introduction of soft gluon contributions, but they are still relevant at Q**2 ~ few (GeV/c)**2 at variance with the case of the unpolarized transverse structure function of the proton. Our finding suggests that spin-dependent correlations among partons may have more impact than spin-independent ones. As a byproduct, it is also shown that the Bloom-Gilman local duality is strongly violated in the region of polarized electroproduction of the Delta(1232) resonance.Comment: revised version to appear in Phys. Rev. D; extended discussion on the generalized DHG sum rul
    corecore