509 research outputs found

    Rapid variations of balmer line strengths in the spectra of Be stars

    Get PDF
    Low resolution photoelectric spectrophotometric measurements of the first four members of the Balmer series in the spectra of one Be and five Be (shell) stars were obtained with the 92-cm telescope and image dissecting scanner. Equivalent widths were computed for each observation, and their standard deviations from the mean values were examined. Results indicate that in three of the program stars, at least one of the Balmer lines shows significant fluctuations in equivalent width. These fluctuations amount to a few per cent of total line strength and the time scales appear to be on the order of three to thirty minutes. The fluctuations are not always present in a given star, indicating that the mechanism producing them may not be continuous. The noncontinuous and nonperiodic nature of the variations, along with their short time scale suggest some form of flare-like or shock origin for the phenomenon

    OT 060420: A Seemingly Optical Transient Recorded by All-Sky Cameras

    Get PDF
    We report on a ~5th magnitude flash detected for approximately 10 minutes by two CONCAM all-sky cameras located in Cerro Pachon - Chile and La Palma - Spain. A third all-sky camera, located in Cerro Paranal - Chile did not detect the flash, and therefore the authors of this paper suggest that the flash was a series of cosmic-ray hits, meteors, or satellite glints. Another proposed hypothesis is that the flash was an astronomical transient with variable luminosity. In this paper we discuss bright optical transient detection using fish-eye all-sky monitors, analyze the apparently false-positive optical transient, and propose possible causes to false optical transient detection in all-sky cameras.Comment: 7 figures, 3 tables, accepted PAS

    Combined application of nitrogen and phosphorus to enhance nitrogen use efficiency and close the wheat yield gap on varying soils in semi‐arid conditions

    Get PDF
    A primary driver of the wheat yield gap in Australia and globally is the supply of nitrogen (N) and options to increase N use efficiency (NUE) are fundamental to closure of the yield gap. Co‐application of N with phosphorus (P) is suggested as an avenue to increase fertiliser NUE, and inputs of N and P fertiliser are key variable costs in low rainfall cereal crops. Within field variability in the response to nutrients due to soil and season offers a further opportunity to refine inputs for increased efficiency. The response of wheat to N fertiliser input (0, 10, 20, 40 and 80 kg N ha‐1) under four levels of P fertiliser (0, 5, 10 and 20 kg P ha−1) was measured on three key low rainfall cropping soils (dune, mid‐slope and swale) across a dune‐swale system in a low rainfall semi‐arid environment in South Australia, for three successive cropping seasons. Wheat on sandy soils produced significant and linear yield and protein responses across all three seasons, while wheat on a clay loam only produced a yield response in a high rainfall season. Responses to P fertiliser were measured on the sandy soils but more variable in nature and a consistent effect of increased P nutrition leading to increased NUE was not measured

    Speciation of phosphorus in a fertilized, reduced-till soil system: in-field treatment incubation study

    Get PDF
    Citation: Khatiwada, Raju, Ganga M. Hettiarachchi, David B. Mengel, and Mingwei Fei. “Speciation of Phosphorus in a Fertilized, Reduced-Till Soil System: In-Field Treatment Incubation Study.” Soil Science Society of America Journal 76, no. 6 (2012): 2006–18. https://doi.org/10.2136/sssaj2011.0299.Phosphorus management in reduced-tillage systems is a great concern for farmers. Conclusive positive results of deep-banding P fertilizers compared with broadcast application and the chemistry of reduced-tillage systems remain unclear. Knowledge of the dominant solid P species present in soil following application of P fertilizers and the resulting potential P availability would help us understand and efficiently manage P in reduced-tillage systems. The objective of this research was to study the influence of placement (broadcast vs. deep-band P), fertilizer source (granular vs. liquid P), and time on the reaction products of P under field conditions. Changes in soil pH, resin-extractable P, total P, and speciation of P were determined at different distances from the point of fertilizer application at 5 wk and 6 mo after P application at a rate of 75 kg ha−1 to a soil system that was under long-term reduced tillage. Resin-extractable P was lower for broadcast treatments compared with deep-band treatments for both time periods. Resin-extractable P was greater in the liquid P-treated soils than in the granular P-treated soils. Speciation results showed that granular P fertilizers tended to form Fe–P-like forms, whereas liquid forms remained in adsorbed P-like forms in the soil 5 wk after application; moreover, speciation results showed granular P fertilizers precipitated less when deep-banded. During the 6-mo period following application, reaction products of broadcast granular, broadcast liquid, and deep-band granular fertilizers transformed to Ca-phosphate or mixtures of Ca-, Fe- and adsorbed-phosphate-like forms, whereas deep-band liquid P remained as mainly adsorbed P-like forms. Deep-banding of P would most likely provide a solution that is both agronomically and environmentally efficient for reduced-till farmers

    Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars

    Get PDF
    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ13C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar’s environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa

    Navigating to new frontiers in behavioral neuroscience: traditional neuropsychological tests predict human performance on a rodent-inspired radial-arm maze

    Get PDF
    We constructed an 11-arm, walk-through, human radial-arm maze (HRAM) as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM) and standard human neuropsychological and cognitive tests. We show that the HRAM is a useful instrument to examine working memory ability, explore the relationships between rodent and human memory and cognition models, and evaluate factors that contribute to human navigational ability. One-hundred-and-fifty-seven participants were tested on the HRAM, and scores were compared to performance on a standard cognitive battery focused on episodic memory, working memory capacity, and visuospatial ability. We found that errors on the HRAM increased as working memory demand became elevated, similar to the pattern typically seen in rodents, and that for this task, performance appears similar to Miller's classic description of a processing-inclusive human working memory capacity of 7 ± 2 items. Regression analysis revealed that measures of working memory capacity and visuospatial ability accounted for a large proportion of variance in HRAM scores, while measures of episodic memory and general intelligence did not serve as significant predictors of HRAM performance. We present the HRAM as a novel instrument for measuring navigational behavior in humans, as is traditionally done in basic science studies evaluating rodent learning and memory, thus providing a useful tool to help connect and translate between human and rodent models of cognitive functioning

    Community end user perceptions of hessian fabric transfluthrin vapour emanators for protecting against mosquitoes under conditions of routine use in Port-au-Prince, Haiti

    Get PDF
    Background: A treated fabric device for emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against night-biting Anopheles and Culex mosquitoes for several months. Here perceptions of community end users provided with such transfluthrin emanators, primarily intended to protect them against day-active Aedes vectors of human arboviruses that often attack people outdoors, were assessed in Port-au-Prince, Haiti. Methods: Following the distribution of transfluthrin emanators to participating households in poor-to-middle class urban neighbourhoods, questionnaire surveys and in-depth interviews of end-user households were supplemented with conventional and Photovoice-based focus group discussions. Observations were assessed synthetically to evaluate user perceptions of protection and acceptability, and to solicit advice for improving and promoting them in the future. Results: Many participants viewed emanators positively and several outlined various advantages over current alternatives, although some expressed concerns about smell, health hazards, bulkiness, unattractiveness and future cost. Most participants expressed moderate to high satisfaction with protection against mosquitoes, especially indoors. Protection against other arthropod pests was also commonly reported, although satisfaction levels were highly variable. Diverse use practices were reported, some of which probably targeted nocturnal Culex resting indoors, rather than Aedes attacking them outdoors during daylight hours. Perceived durability of protection varied: While many participants noted some slow loss over months, others noted rapid decline within days. A few participants specifically attributed efficacy loss to outdoor use and exposure to wind or moisture. Many expressed stringent expectations of satisfactory protection levels, with even a single mosquito bite considered unsatisfactory. Some participants considered emanators superior to fans, bedsheets, sprays and coils, but it is concerning that several preferred them to bed nets and consequently stopped using the latter. Conclusions: The perspectives shared by Haitian end-users are consistent with those from similar studies in Brazil and recent epidemiological evidence from Peru that other transfluthrin emanator products can protect against arbovirus infection. While these encouraging sociological observations contrast starkly with evidence of essentially negligible effects upon Aedes landing rates from parallel entomological assessments across Haiti, Tanzania, Brazil and Peru, no other reason to doubt the generally encouraging views expressed herein by Haitian end users could be identified

    Nano-Stenciled RGD-Gold Patterns That Inhibit Focal Contact Maturation Induce Lamellipodia Formation in Fibroblasts

    Get PDF
    Cultured fibroblasts adhere to extracellular substrates by means of cell-matrix adhesions that are assembled in a hierarchical way, thereby gaining in protein complexity and size. Here we asked how restricting the size of cell-matrix adhesions affects cell morphology and behavior. Using a nanostencil technique, culture substrates were patterned with gold squares of a width and spacing between 250 nm and 2 µm. The gold was functionalized with RGD peptide as ligand for cellular integrins, and mouse embryo fibroblasts were plated. Limiting the length of cell-matrix adhesions to 500 nm or less disturbed the maturation of vinculin-positive focal complexes into focal contacts and fibrillar adhesions, as indicated by poor recruitment of α5-integrin. We found that on sub-micrometer patterns, fibroblasts spread extensively, but did not polarize. Instead, they formed excessive numbers of lamellipodia and a fine actin meshwork without stress fibers. Moreover, these cells showed aberrant fibronectin fibrillogenesis, and their speed of directed migration was reduced significantly compared to fibroblasts on 2 µm square patterns. Interference with RhoA/ROCK signaling eliminated the pattern-dependent differences in cell morphology. Our results indicate that manipulating the maturation of cell-matrix adhesions by nanopatterned surfaces allows to influence morphology, actin dynamics, migration and ECM assembly of adhering fibroblasts
    corecore