1,618 research outputs found

    Dielectrophoresis-Driven Spreading of Immersed Liquid Droplets

    Get PDF
    In recent years electrowetting-on-dielectric (EWOD) has become an effective tool to control partial wetting. EWOD uses the liquid−solid interface as part of a capacitive structure that allows capacitive and interfacial energies to adjust by changes in wetting when the liquid−solid interface is charged due to an applied voltage. An important aspect of EWOD has been its applications in micro fluidics in chemistry and biology and in optical devices and displays in physics and engineering. Many of these rely on the use of a liquid droplet immersed in a second liquid due to the need either for neutral buoyancy to overcome gravity and shield against impact shocks or to encapsulate the droplet for other reasons, such as in microfluidic-based DNA analyses. Recently, it has been shown that nonwetting oleophobic surfaces can be forcibly wetted by nonconducting oils using nonuniform electric fields and an interface-localized form of liquid dielectrophoresis (dielectrowetting). Here we show that this effect can be used to create films of oil immersed in a second immiscible fluid of lower permittivity. We predict that the square of the thickness of the film should obey a simple law dependent on the square of the applied voltage and with strength dependent on the ratio of difference in permittivity to the liquid-fluid interfacial tension, Δε/γLF. This relationship is experimentally confirmed for 11 liquid−air and liquid−liquid combinations with Δε/γLF having a span of more than two orders of magnitude. We therefore provide fundamental understanding of dielectrowetting for liquid-in-liquid systems and also open up a new method to determine liquid−liquid interfacial tensions

    Electrowetting of liquid marbles

    Get PDF
    Electrowetting of water drops on structured superhydrophobic surfaces are known to cause an irreversible change from a slippy (Cassie-Baxter) to a sticky (Wenzel) regime. An alternative approach to using a water drop on a superhydrophobic surface to obtain a non-wetting system is to use a liquid marble on a smooth solid substrate. A liquid marble is a droplet coated in hydrophobic grains, which therefore carries its own solid surface structure as a conformal coating. Such droplets can be considered as perfect non-wetting systems having contact angles to smooth solid substrates of close to 180 degrees. In this work we report the electrowetting of liquid marbles made of water coated with hydrophobic lycopodium grains and show that the electrowetting is completely reversible. Marbles are shown to return to their initial contact angle for both ac and dc electrowetting and without requiring a threshold voltage to be exceeded. Furthermore, we provide a proof-of-principle demonstration that controlled motion of marbles on a finger electrode structure is possible

    Embryonic Pattern Scaling Achieved by Oppositely Directed Morphogen Gradients

    Full text link
    Morphogens are proteins, often produced in a localised region, whose concentrations spatially demarcate regions of differing gene expression in developing embryos. The boundaries of expression must be set accurately and in proportion to the size of the one-dimensional developing field; this cannot be accomplished by a single gradient. Here, we show how a pair of morphogens produced at opposite ends of a developing field can solve the pattern-scaling problem. In the most promising scenario, the morphogens effectively interact according to the annihilation reaction A+BA+B\to\emptyset and the switch occurs according to the absolute concentration of AA or BB. In this case embryonic markers across the entire developing field scale approximately with system size; this cannot be achieved with a pair of non-interacting gradients that combinatorially regulate downstream genes. This scaling occurs in a window of developing-field sizes centred at a few times the morphogen decay length.Comment: 24 pages; 11 figures; uses iopar

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Chain transfer to solvent in the radical polymerization of structurally diverse acrylamide monomers using straight-chain and branched alcohols as solvents

    Get PDF
    Chain transfer to solvent in conventional radical polymerizations of N-tert-butylacrylamide (TBAM) and N-(2-morpholin-4-ylethyl) acrylamide (MEA) in a range of alcohol solvents is investigated. Mayo analysis of polymerization of TBAM in linear alcohols (C-3-C-9) resulted in an approximately linear increase in chain transfer to solvent constant (C-tr,(S)) with the number of methylene (CH2) units in the solvent. The branched alcohol 3-methyl-3-pentanol gave the smallest C-tr,C-S (using Mayo analysis), and thus allowed attainment of higher molecular weights (MWs) in the nitroxide-mediated polymerizations (NMP) of TBAM. Overall, the data show that MEA is more prone to chain transfer to solvent than TBAM (higher C-tr,C-S), and further analysis of the conventional radical polymerization of MEA in 3-methyl-3-pentanol indicate chain transfer to monomer may also be occurring. The first controlled/ living polymerizations of MEA are detailed with chain transfer having a greater impact on maximum achievable MWs in NMP in comparison to TBAM

    “some kind of thing it aint us but yet its in us”: David Mitchell, Russell Hoban, and metafiction after the millennium

    Get PDF
    This article appraises the debt that David Mitchell’s Cloud Atlas owes to the novels of Russell Hoban, including, but not limited to, Riddley Walker. After clearly mapping a history of Hoban’s philosophical perspectives and Mitchell’s inter-textual genre-impersonation practice, the article assesses the degree to which Mitchell’s metatextual methods indicate a nostalgia for by-gone radical aesthetics rather than reaching for new modes of its own. The article not only proposes several new backdrops against which Mitchell’s novel can be read but also conducts the first in-depth appraisal of Mitchell’s formal linguistic replication of Riddley Walker

    Near axisymmetric partial wetting using interface-localized liquid dielectrophoresis

    Get PDF
    The wetting of solid surfaces can be modified by altering the surface free energy balance between the solid, liquid, and vapour phases. Liquid dielectrophoresis (L-DEP) can produce wetting on normally non-wetting surfaces, without modification of the surface topography or chemistry. L-DEP is a bulk force acting on the dipoles of a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. However, if this force is induced by a non-uniform electric field across a solid -liquid interface, it can be used to enhance and control the wetting of a dielectric liquid. Recently, it was reported theoretically and experimentally that this approach can cause a droplet of oil to spread along parallel interdigitated electrodes thus forming a stripe of liquid. Here we show that by using spiral shaped electrodes actuated with four 90º successive phase shifted signals, a near axisymmetric spreading of droplets can be achieved. Experimental observations show that the induced wetting can achieve film formation, an effect not possible with electrowetting. We show that the spreading is reversible thus enabling a wide range of partial wetting droplet states to be achieved in a controllable manner. Furthermore, we find that the cosine of the contact angle has a quadratic dependence on applied voltage during spreading and deduce a scaling law for the dependence of the strength of the effect on the electrode size

    Nodal Structure of Unconventional Superconductors Probed by the Angle Resolved Thermal Transport Measurements

    Get PDF
    Over the past two decades, unconventional superconductivity with gap symmetry other than s-wave has been found in several classes of materials, including heavy fermion (HF), high-T_c, and organic superconductors. Unconventional superconductivity is characterized by anisotropic superconducting gap functions, which may have zeros (nodes) along certain directions in the Brillouin zone. The nodal structure is closely related to the pairing interaction, and it is widely believed that the presence of nodes is a signature of magnetic or some other exotic, rather than conventional phonon-mediated, pairing mechanism. Therefore experimental determination of the gap function is of fundamental importance. However, the detailed gap structure, especially the direction of the nodes, is an unresolved issue in most unconventional superconductors. Recently it has been demonstrated that the thermal conductivity and specific heat measurements under magnetic field rotated relative to the crystal axes are a powerful method for determining the shape of the gap and the nodal directions in the bulk. Here we review the theoretical underpinnings of the method and the results for the nodal structure of several unconventional superconductors, including borocarbide YNi2_2B2_2C, heavy fermions UPd2_2Al3_3, CeCoIn5_5, and PrOs4_4Sb12_{12}, organic superconductor, κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2, and ruthenate Sr2_2RuO4_4, determined by angular variation of the thermal conductivity and heat capacity.Comment: topical review, 55 pages, 35 figures. Figure quality has been reduced for submission to cond-mat, higher quality figures available from the authors or from the publishe

    Synthesis of fluorinated alkoxyamines and alkoxyamine-initiated nitroxide-mediated precipitation polymerizations of styrene in supercritical carbon dioxide

    Get PDF
    TIPNO (2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide)-alkoxyamine was found to give reasonably controlled/living nitroxide-mediated (NMP) precipitation polymerizations of styrene in supercritical carbon dioxide (scCO(2)). In contrast under the same conditions, the analogous SG1 (N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl)nitroxide)-alkoxyamine gave higher rates of polymerization and inferior controlled/living character. The circumvention of the requirement for excess free (nitroxide](0) allowed the study of nitroxide partitioning effects in scCO(2) for three newly synthesized fluorinated alkoxyamines. Two alkoxyamines dissociated into scCO(2)-philic fluorinated TIPNO-nitroxide derivatives, while another contains a similar sized fluorinated "foot". Despite the increased steric bulk about the N-O bond for the novel fluorinated alkoxyamines, all polymerizations proceeded at a similar rate and level of control to the TIPNO system in solution (toluene). PREDICI simulations for the styrene/TIPNO system are used to support extensive partitioning effects observed in scCO(2) for the fluorinated alkoxyamines.Irish Research Council (formerly IRCSET) IUPAC Transnational Call in Polymer Chemistry to F.Aldabbagh. National Science Foundation (NSF CHE-1057927, USA) to R. Braslau.peer-reviewe

    Mechanical tuning of the evaporation rate of liquid on crossed fibers

    Full text link
    We investigate experimentally the drying of a small volume of perfectly wetting liquid on two crossed fibers. We characterize the drying dynamics for the three liquid morphologies that are encountered in this geometry: drop, column and a mixed morphology, in which a drop and a column coexist. For each morphology, we rationalize our findings with theoretical models that capture the drying kinetics. We find that the evaporation rate depends significantly on the liquid morphology and that the drying of liquid column is faster than the evaporation of the drop and the mixed morphology for a given liquid volume. Finally, we illustrate that shearing a network of fibers reduces the angle between them, changes the morphology towards the column state, and so enhances the drying rate of a volatile liquid deposited on it
    corecore