1,187 research outputs found

    Revised Born-Oppenheimer approach and a multielectron reprojection method for inelastic collisions

    Full text link
    The quantum reprojection method within the standard adiabatic Born-Oppenheimer approach is derived for multielectron collision systems. The method takes nonvanishing asymptotic nonadiabatic couplings into account and distinguishes asymptotic currents in molecular state and in atomic state channels, leading to physically consistent and reliable results. The method is demonstrated for the example of low-energy inelastic Li+Na collisions, for which the conventional application of the standard adiabatic Born-Oppenheimer approach fails and leads to paradoxes such as infinite inelastic cross sections

    Four Years Later: How the 2006 Amendments to the Federal Rules Have Reshaped the E-Discovery Landscape and are Revitalizing the Civil Justice System

    Get PDF
    The 2006 amendments to the Federal Rules of Civil Procedure, which were enacted to address the potentially immense burden involved in the discovery of electronically-stored information (“ESI”), set in motion a process that is revitalizing the primary purpose of the Federal Rules of Civil Procedure adopted nearly seventy years earlier: “to secure the just, speedy, and inexpensive determination of every action and proceeding.” One of the principal means through which the Federal Rules of Civil Procedure achieve this purpose is by allowing for the discovery of “any nonprivileged matter that is relevant to any party’s claim or defense.” The reasoning behind these liberal discovery rules is that once parties know, ostensibly through discovery, their respective positions in a dispute, they will reach a resolution more quickly and efficiently

    Crystal Growth and Unusual Electronic Transport Properties of Some Reduced Molybdenum Oxides with Bi-Octahedral Mo10 Clusters

    Get PDF
    Single crystals of AM05O3 (A = Ca, Sr, La-Gd), suitable for electrical conductivity measurements have been grown by high temperature and fused salt electrolytic techniques. The structures of all of these compounds are dominated by the presence of bi-octahedral clusters of Mo atoms joined together parallel to the monoclinic a axis, forming infinite chains. Temperature dependent electrical resistivity measurements on AMo5Og (A = La, Ce, Pr, Nd, Sm) show anomalous metal-semiconductor transitions near 180 and 30 K. The resistivities of the Eu and Gd analogues are different, in that the former is semiconducting while the latter shows a weak anomaly ~ 110 K. The Ca and Sr analogues are also semiconducting in the range 20-300 K. The electrical conductivity of these phases appears to be closely related to the inter-cluster separation and the number of metal-cluster electrons. The magnetic susceptibility of these compounds show no anomalies at the temperatures corresponding to the transitions seen in their electrical resistivities. The magnetic susceptibility of LaMosOg shows a small decrease in the !y (dy/dT) vs T plot in the vicinity of ~ 150 K

    Modelling the alongshore variability of optimum rip current escape strategies on a multiple rip-channelled beach

    Get PDF
    Rip currents are a leading cause of drowning on beaches worldwide. How bathers caught in a rip current should attempt to escape has been a subject of recent debate. A numerical model of human bathers escaping from a rip current flow field is applied to a 2-km long section of the open beach of Biscarrosse, SW France. The study area comprises 4 rip channels that visually appear similar from the beach, but exhibit different morphologies. Simulations are run for 2 representative hazardous summer wave conditions. Results show that small changes in the bar/rip morphology have a large impact on the rip flow field, and in turn on the alongshore variability of the optimal rip current escape strategy. The overall flow regime (dominant surf-zone exits versus dominant recirculation), which is found to be influenced by the alongshore dimensions of the sand bars adjacent to the rip channel, is more important to rip current escape strategy than rip velocity. Flow regime was found to dictate the success of the stay afloat strategy, with greater success for recirculating flow. By comparison, the dominant longshore feeder current and rip-neck orientation determined the best direction to swim parallel toward. For obliquely incident waves, swim parallel downdrift then swim onshore with breaking waves was highly successful and can become a simple safety message for beach safety practitioners to communicate to the general public. However, in SW France where rip spacing is large (∼400 m), surf-zone eddies have large spatial scales of the order of 100+ m, requiring a large distance (100+ m) to swim to reach safety, therefore requiring good swimming ability. This also shows that in addition to rip current intensity, rip flow regime and the depth of adjacent sand bars, rip spacing is important for defining rip current hazard and the best safety message. Our results also indicate that for normal to near-normal wave incidence, rip current hazard and best rip current escape strategy are highly variable alongshore due to subtle differences in bar/rip morphology from one rip system to another. These findings challenge the objective of developing a universal rip current escape strategy message on open rip-channelled beaches exposed to normal to near-normal wave incidence, even for seemingly similar rip channels

    Rip current types, circulation and hazard

    Get PDF
    AbstractRip currents are narrow and concentrated seaward-directed flows that extend from close to the shoreline, through the surf zone, and varying distances beyond. Rip currents are ubiquitous on wave-exposed coasts. Each year they cause hundreds of drowning deaths and tens of thousands of rescues on beaches worldwide and are therefore the leading deadly hazard to recreational beach users. The broad definition above masks considerable natural variability in terms of rip current occurrence in time and space, flow characteristics and behaviour. In particular, surf-zone rip currents have long been perceived as narrow flows extending well beyond the breakers, flushing out the surf zone at a high rate (‘exit flow’ circulation regime), while more recent studies have shown that rip flow patterns can consist of quasi-steady semi-enclosed vortices retaining most of the floating material within the surf zone (‘circulatory flow’ circulation regime). Building upon a growing body of rip current literature involving numerical modelling and theory together with emergence of dense Lagrangian field measurements, we develop a robust rip current type classification that provides a relevant framework to understand the primary morphological and hydrodynamic parameters controlling surf-zone rip current occurrence and dynamics. Three broad categories of rip current types are described based on the dominant controlling forcing mechanism. Each category is further divided into two types owing to different physical driving mechanisms for a total of six fundamentally different rip current types: hydrodynamically-controlled (1) shear instability rips and (2) flash rips, which are transient in both time and space and occur on alongshore-uniform beaches; bathymetrically-controlled (3) channel rips and (4) focused rips, which occur at relatively fixed locations and are driven by hydrodynamic processes forced by natural alongshore variability of the morphology in both the surf zone and inner shelf zone; and boundary-controlled (5) deflection rips and (6) shadow rips, which flow against rigid lateral boundaries such as natural headlands or anthropogenic structures. For each rip current type, flow response to changes in hydrodynamic and morphologic forcing magnitude is examined in regard to velocity modulation and changes in circulation regime, providing key force-response relationships of rip currents. We also demonstrate that in the real world, rip currents form through a mixture of driving mechanisms and the discrete rip types defined in fact form key elements in a wide and complex spectrum of rip currents on natural beaches. It is anticipated that this rip current type classification will serve as a resource for coastal scientists and non-specialists with an interest in the rip current hazard, and as a platform for future rip current studies. Finally, we suggest some important future research directions highlighting the need for coastal and beach safety communities to collaborate in order to improve rip current education and awareness

    THE PATIENT-SPECIFIC INJURY SCORE: PRECISION MEDICINE IN TRAUMA PATIENTS PREDICTS ORGAN DYSFUNCTION AND OUTCOMES

    Get PDF
    poster abstractIntroduction: Current injury scoring systems in polytraumatized patients are limited at predicting patient outcomes. We present a novel method that quantifies mechanical tissue damage and cumulative hypoperfusion using a precision medicine approach. We hypothesized that a Patient-Specific Injury score formulated from individualized injury indices would stratify patient risk for developing organ dysfunction after injury. We compared correspondence between PSI and the Injury Severity Score with outcomes of organ dysfunction and MOF. Methods: Fifty Multiply-injured-patients (MIPs) were studied. Tissue Damage Volume scores were measured from admission pan-axial CT scans using purpose-designed post-processing software to quantify volumetric magnitude and distribution of injuries. Ischemic injury was quantified using Shock Volumes. SV is a time-magnitude integration of shock index. Values above 0.9 were measured in the 24-hours after injury. Metabolic response was quantified by subtracting the lowest first 24 hr pH from 7.40. PSI combines these indices into the formula: PSI=[0.2TDV+SV]*MR. Correspondence coefficients from regression modeling between PSI and organ dysfunction, measured by the Marshall Multiple Organ Dysfunction score averaged from days 2-5 post-injury, were compared to similar regression models of ISS vs. day 2-5 MOD-scores. We compared PSI and ISS in patients that did or did not develop MOF. Results: PSI demonstrated better correlation to organ dysfunction (r2=0.576) in comparison to ISS (r2=0.393) using the MOD-score on days 2-5. Mean PSI increased 3.4x(58.5vs.17.0;p<0.02) and ISS scores increased 1.4x(39.0vs.28.0;p=0.10) in patients that developed MOF versus those that did not. Conclusions: This study shows that a precision medicine approach that integrates patient-specific indices of mechanical tissue damage, ischemic tissue injury, and metabolic response better corresponds to phenotypic changes including organ dysfunction and MOF compared to ISS in MIPs. The PSI-score can be calculated within 24 hours of injury, making it useful for stratifying risk and predicting the magnitude of organ dysfunction to anticipate

    T. brucei cathepsin-L increases arrhythmogenic sarcoplasmic reticulum-mediated calcium release in rat cardiomyocytes

    Get PDF
    Aims: African trypanosomiasis, caused by Trypanosoma brucei species, leads to both neurological and cardiac dysfunction and can be fatal if untreated. While the neurological-related pathogenesis is well studied, the cardiac pathogenesis remains unknown. The current study exposed isolated ventricular cardiomyocytes and adult rat hearts to T. brucei to test whether trypanosomes can alter cardiac function independent of a systemic inflammatory/immune response. Methods and results: Using confocal imaging, T. brucei and T. brucei culture media (supernatant) caused an increased frequency of arrhythmogenic spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release (Ca2+ waves) in isolated adult rat ventricular cardiomyocytes. Studies utilising inhibitors, recombinant protein and RNAi all demonstrated that this altered SR function was due to T. brucei cathepsin-L (TbCatL). Separate experiments revealed that TbCatL induced a 10–15% increase of SERCA activity but reduced SR Ca2+ content, suggesting a concomitant increased SR-mediated Ca2+ leak. This conclusion was supported by data demonstrating that TbCatL increased Ca2+ wave frequency. These effects were abolished by autocamtide-2-related inhibitory peptide, highlighting a role for CaMKII in the TbCatL action on SR function. Isolated Langendorff perfused whole heart experiments confirmed that supernatant caused an increased number of arrhythmic events. Conclusion: These data demonstrate for the first time that African trypanosomes alter cardiac function independent of a systemic immune response, via a mechanism involving extracellular cathepsin-L-mediated changes in SR function

    The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps

    Get PDF
    Tree ring chronologies were developed from trees growing at two sites in Slovenia which differed in their ecological and climatological characteristics. Ring width, maximum latewood density, annual height increment and latewood cellulose carbon isotope composition were developed at both sites and time-series verified against instrumental climate data over the period (AD 1960–AD 2002). Ring width sensitivity to summer temperature is site-dependent, with contrasting responses at alpine and lowland sites. Maximum density responds to September temperatures, suggesting lignification after cell division has ended for the season. Stable carbon isotopes have great potential, responding to summer temperature at oth alpine and lowland stands. Height increment appears relatively insensitive to climate, and is likely to be dominated by local stand dynamics
    corecore