7,566 research outputs found
Fabrication of high efficiency and radiation resistant GaAs solar cells
Systematic improvements in fabrication yield were obtained by appropriate control of the liquid phase epitaxial growth process, contact fabrication and surface preparation. To improve radiation hardness, the junction depth was decreased while overcoming the penalty in decreased solar cell efficiency which tends to go hand-in-hand with the reduction of junction depth in (AlGa) As-GaAs solar cells. Cells were made with an AMO efficiency of 18% and a junction depth of 0.5 micrometers, as compared to junction depths on the order of 1.0 micrometers. With respect to the damage caused by proton irradiation, the nature of the observed damage was correlated to the energy and penetration depth of the damaging protons
GMC Collisions as Triggers of Star Formation. I. Parameter Space Exploration with 2D Simulations
We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for GMC-GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region (PDR) based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter, and compare isolated versus colliding clouds. We find factors of ~2-3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on 13CO(J=2-1), 13CO(J=3-2), and 12CO(J=8-7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find the ratio of J=8-7 to lower-J emission is a powerful diagnostic probe of GMC collisions
Surface coatings and catalyst production by electrodeposition
Electrodeposition and electrocodeposition in low gravity are discussed. The goal is to provide a better understanding of the role of convection and buoyancy in the mechanisms of formation of some electrodeposited surfaces, fluid flow in the vicinity of electrodepositing surfaces, the influence of a moving medium upon codeposition, the effect of gravity upon the dispersion (coagulation) of neutral particles that are desired for codeposition and preparation of improved surface coatings and metal catalysts
Spatially explicit threat assessment to target food tree species in Burkina Faso
There is a general agreement on the need to ensure the in situ conservation and availability of valuable genetic resources of wild species that are important for food security and nutrition. In order to be able to adopt adequate conservation measures a spatial assessment
of their distribution and a sound analysis of the causes of and their sensitivity to threats
is required.
The ADA funded project “Threats to priority food tree species in Burkina Faso: Drivers
of resource losses and mitigation measures” gave us the opportunity to develop a spati-
ally explicit threat assessment methodology with focus on expert feedback, as there is no
comprehensive and standardised approach available at the moment. Relevant threats were
identified jointly with regional project partners from INERA and CNSF during meetings
in Ouagadougou in 2012 and 2013 and by means of a case study on farmers’ perception.
Once determined were the most important ones (overexploitation, overgrazing, fire, climate
change, cotton production and mining) we identified openly accessible datasets suitable to
represent the spatial patterns of threat intensities throughout the country. Now we needed
to transform the threat intensities into potential impact over the target species distribution
ranges.
To do so the distribution and threat sensitivity of 16 food tree species were assessed by 17
local and international experts by means of an online feedback survey that was specifically
developed for this project. These experts were asked to rate on a five point scale different
distribution models and the sensitivity to threats. The survey was analysed applying a
consensus method to identify the most consistent distribution model and threat specific
sensitivity rating on a species by species basis. The potential impact of climate change was
modeled using Global Circulation Models (GCM’s) deriving from the fifth assessment of
the Intergovernmental Panel on Climate Change (IPCC5) in 2014.
The results were then used to calculate and create individual and combined threat
potential maps that enable the identification of areas in Burkina Faso where species are
highly threatened. The spatial patterns of the threat levels provides evidence to prioritise
food tree populations with relative urgency for undertaking conservation actions
The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change
The current distribution of forest genetic resources on Earth is the result of a combination of natural processes and human actions. Over time, tree populations have become adapted to their habitats including the local ecological disturbances they face. As the planet enters a phase of human-induced climate change of unprecedented speed and magnitude, however, previously locally-adapted populations are rendered less suitable for new conditions, and ‘natural’ biotic and abiotic disturbances are taken outside their historic distribution, frequency and intensity ranges. Tree populations rely on phenotypic plasticity to survive in extant locations, on genetic adaptation to modify their local phenotypic optimum or on migration to new suitable environmental conditions. The rate of required change, however, may outpace the ability to respond, and tree species and populations may become locally extinct after specific, but as yet unknown and unquantified, tipping points are reached. Here, we review the importance of forest genetic resources as a source of evolutionary potential for adaptation to changes in climate and other ecological factors. We particularly consider climate-related responses in the context of linkages to disturbances such as pests, diseases and fire, and associated feedback loops. The importance of management strategies to conserve evolutionary potential is emphasised and recommendations for policy-makers are provided
Strain Hardening of Polymer Glasses: Entanglements, Energetics, and Plasticity
Simulations are used to examine the microscopic origins of strain hardening
in polymer glasses. While stress-strain curves for a wide range of temperature
can be fit to the functional form predicted by entropic network models, many
other results are fundamentally inconsistent with the physical picture
underlying these models. Stresses are too large to be entropic and have the
wrong trend with temperature. The most dramatic hardening at large strains
reflects increases in energy as chains are pulled taut between entanglements
rather than a change in entropy. A weak entropic stress is only observed in
shape recovery of deformed samples when heated above the glass transition.
While short chains do not form an entangled network, they exhibit partial shape
recovery, orientation, and strain hardening. Stresses for all chain lengths
collapse when plotted against a microscopic measure of chain stretching rather
than the macroscopic stretch. The thermal contribution to the stress is
directly proportional to the rate of plasticity as measured by breaking and
reforming of interchain bonds. These observations suggest that the correct
microscopic theory of strain hardening should be based on glassy state physics
rather than rubber elasticity.Comment: 15 pages, 12 figures: significant revision
Entanglement Dynamics of Two Independent Cavity-Embedded Quantum Dots
We investigate the dynamical behavior of entanglement in a system made by two
solid-state emitters, as two quantum dots, embedded in two separated
micro-cavities. In these solid-state systems, in addition to the coupling with
the cavity mode, the emitter is coupled to a continuum of leaky modes providing
additional losses and it is also subject to a phonon-induced pure dephasing
mechanism. We model this physical configuration as a multipartite system
composed by two independent parts each containing a qubit embedded in a
single-mode cavity, exposed to cavity losses, spontaneous emission and pure
dephasing. We study the time evolution of entanglement of this multipartite
open system finally applying this theoretical framework to the case of
currently available solid-state quantum dots in micro-cavities.Comment: 10 pages, 4 figures, to appear in Topical Issue of Physica Scripta on
proceedings of CEWQO 201
Formation of pseudoaneurysm after aortic valve replacement without previous endocarditis: a case-control study
Processing of strong flux trapping high T(subc) oxide superconductors: Center director's discretionary fund
Magnetic suspension effect was first observed in samples of YBa2Cu3O7/AgO(Y-123/AgO) composites. Magnetization measurements of these samples show a much larger hysteresis which corresponds to a large critical current density. In addition to the Y-123AgO composites, recently similar suspension effects in other RE-123/AgO, where RE stands for rare-Earth elements, were also observed. Some samples exhibit even stronger flux pinning than that of the Y-123/AgO sample. An interesting observation was that in order to form the composite which exhibits strong flux trapping effect the sintering temperature depends on the particular RE-123 compound used. The paper presents the detailed processing conditions for the formation of these RE-123/AgO composites, as well as the magnetization and critical field data
- …
