116 research outputs found

    Update on inflammatory breast cancer

    Get PDF
    Inflammatory breast cancer (IBC) is both the least frequent and the most severe form of epithelial breast cancer. The diagnosis is based on clinical inflammatory signs and is reinforced by pathological findings. Significant progress has been made in the management of IBC in the past 20 years. Yet survival among IBC patients is still only one-half that among patients with non-IBC. Identification of the molecular determinants of IBC would probably lead to more specific treatments and to improved survival. In the present article we review recent advances in the molecular pathogenesis of IBC. A more comprehensive view will probably be obtained by pan-genomic analysis of human IBC samples, and by functional in vitro and in vivo assays. These approaches may offer better patient outcome in the near future

    NEFL mRNA Expression Level Is a Prognostic Factor for Early-Stage Breast Cancer Patients

    Get PDF
    Neurofilament, light polypeptide (NEFL) was demonstrated to be ectopically expressed in breast cancer tissues and decreased in lymph node metastases compared to the paired primary breast cancers in our previous study. Moreover, in several studies, NEFL was regarded as a tumor suppressor gene, and its loss of heterozygosity (LOH) was related to carcinogenesis and metastasis in several types of cancer. To explore the role of NEFL in the progression of breast cancer and to evaluate its clinical significance, we detected the NEFL mRNA level in normal breast tissues, primary breast cancer samples and lymph node metastases, and then analyzed the association between the NEFL expression level and several clinicopathological parameters and disease-free survival (DFS). NEFL mRNA was found to be expressed in 92.3% of breast malignancies and down-regulated in lymph node metastases compared to the paired primary tumors. NEFL mRNA level was lower in primary breast cancers with positive lymph nodes than in cancers with negative lymph nodes. Moreover, a low expression level of NEFL mRNA indicated a poor five-year DFS for early-stage breast cancer patients. Thus, NEFL mRNA is ectopically expressed in breast malignancies and could be a potential prognostic factor for early-stage breast cancer patients

    A refined molecular taxonomy of breast cancer

    Get PDF
    The current histoclinical breast cancer classification is simple but imprecise. Several molecular classifications of breast cancers based on expression profiling have been proposed as alternatives. However, their reliability and clinical utility have been repeatedly questioned, notably because most of them were derived from relatively small initial patient populations. We analyzed the transcriptomes of 537 breast tumors using three unsupervised classification methods. A core subset of 355 tumors was assigned to six clusters by all three methods. These six subgroups overlapped with previously defined molecular classes of breast cancer, but also showed important differences, notably the absence of an ERBB2 subgroup and the division of the large luminal ER+ group into four subgroups, two of them being highly proliferative. Of the six subgroups, four were ER+/PR+/AR+, one was ER−/PR−/AR+ and one was triple negative (AR−/ER−/PR−). ERBB2-amplified tumors were split between the ER−/PR−/AR+ subgroup and the highly proliferative ER+ LumC subgroup. Importantly, each of these six molecular subgroups showed specific copy-number alterations. Gene expression changes were correlated to specific signaling pathways. Each of these six subgroups showed very significant differences in tumor grade, metastatic sites, relapse-free survival or response to chemotherapy. All these findings were validated on large external datasets including more than 3000 tumors. Our data thus indicate that these six molecular subgroups represent well-defined clinico-biological entities of breast cancer. Their identification should facilitate the detection of novel prognostic factors or therapeutical targets in breast cancer

    NF-κB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation

    Get PDF
    Activation of NF-κB in inflammatory breast cancer (IBC) is associated with loss of estrogen receptor (ER) expression, indicating a potential crosstalk between NF-κB and ER. In this study, we examined the activation of NF-κB in IBC and non-IBC with respect to ER and EGFR and/or ErbB2 expression and MAPK hyperactivation. A qRT–PCR based ER signature was evaluated in tumours with and without transcriptionally active NF-κB, as well as correlated with the expression of eight NF-κB target genes. Using a combined ER/NF-κB signature, hierarchical clustering was executed. Hyperactivation of MAPK was investigated using a recently described MAPK signature (Creighton et al, 2006), and was linked to tumour phenotype, ER and EGFR and/or ErbB2 overexpression. The expression of most ER-modulated genes was significantly elevated in breast tumours without transcriptionally active NF-κB. In addition, the expression of most ER-modulated genes was significantly anticorrelated with the expression of most NF-κB target genes, indicating an inverse correlation between ER and NF-κB activation. Clustering using the combined ER and NF-κB signature revealed one cluster mainly characterised by low NF-κB target gene expression and a second one with elevated NF-κB target gene expression. The first cluster was mainly characterised by non-IBC specimens and IHC ER+ breast tumours (13 out of 18 and 15 out of 18 respectively), whereas the second cluster was mainly characterised by IBC specimens and IHC ER− breast tumours (12 out of 19 and 15 out of 19 respectively) (Pearson χ2, P<0.0001 and P<0.0001 respectively). Hyperactivation of MAPK was associated with both ER status and tumour phenotype by unsupervised hierarchical clustering using the MAPK signature and was significantly reflected by overexpression of EGFR and/or ErbB2. NF-κB activation is linked to loss of ER expression and activation in IBC and in breast cancer in general. The inverse correlation between NF-κB activation and ER activation is due to EGFR and/or ErbB2 overexpression, resulting in NF-κB activation and ER downregulation

    Aberrant methylation of the Adenomatous Polyposis Coli (APC) gene promoter is associated with the inflammatory breast cancer phenotype

    Get PDF
    Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter occurs in about 40% of breast tumours and has been correlated with reduced APC protein levels. To what extent epigenetic alterations of the APC gene may differ according to specific breast cancer phenotypes, remains to be elucidated. Our aim was to explore the role of APC methylation in the inflammatory breast cancer (IBC) phenotype. The status of APC gene promoter hypermethylation was investigated in DNA from normal breast tissues, IBC and non-IBC by both conventional and real-time quantitative methylation-specific PCR (MSP). APC methylation levels were compared with APC mRNA and protein levels. Hypermethylation of the APC gene promoter was present in 71% of IBC samples (n=21) and 43% of non-IBC samples (n=30) by conventional MSP (P=0.047). The APC gene also showed an increased frequency of high methylation levels in IBC (in 74% of cases, n=19) vs non-IBC (in 46% of cases, n=35) using a qMSP assay (P=0.048). We observed no significant association between APC methylation levels by qMSP and APC mRNA or protein expression levels. In conclusion, for the first time, we report the association of aberrant methylation of the APC gene promoter with the IBC phenotype, which might be of biological and clinical importance

    The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of malignant transformation, progression and metastasis of melanoma is poorly understood. Gene expression profiling of human cancer has allowed for a unique insight into the genes that are involved in these processes. Thus, we have attempted to utilize this approach through the analysis of a series of primary, non-metastatic cutaneous tumors and metastatic melanoma samples.</p> <p>Methods</p> <p>We have utilized gene microarray analysis and a variety of molecular techniques to compare 40 metastatic melanoma (MM) samples, composed of 22 bulky, macroscopic (replaced) lymph node metastases, 16 subcutaneous and 2 distant metastases (adrenal and brain), to 42 primary cutaneous cancers, comprised of 16 melanoma, 11 squamous cell, 15 basal cell skin cancers. A Human Genome U133 Plus 2.0 array from Affymetrix, Inc. was utilized for each sample. A variety of statistical software, including the Affymetrix MAS 5.0 analysis software, was utilized to compare primary cancers to metastatic melanomas. Separate analyses were performed to directly compare only primary melanoma to metastatic melanoma samples. The expression levels of putative oncogenes and tumor suppressor genes were analyzed by semi- and real-time quantitative RT-PCR (qPCR) and Western blot analysis was performed on select genes.</p> <p>Results</p> <p>We find that primary basal cell carcinomas, squamous cell carcinomas and thin melanomas express dramatically higher levels of many genes, including <it>SPRR1A/B</it>, <it>KRT16/17</it>, <it>CD24</it>, <it>LOR</it>, <it>GATA3</it>, <it>MUC15</it>, and <it>TMPRSS4</it>, than metastatic melanoma. In contrast, the metastatic melanomas express higher levels of genes such as <it>MAGE</it>, <it>GPR19</it>, <it>BCL2A1</it>, <it>MMP14</it>, <it>SOX5</it>, <it>BUB1</it>, <it>RGS20</it>, and more. The transition from non-metastatic expression levels to metastatic expression levels occurs as melanoma tumors thicken. We further evaluated primary melanomas of varying Breslow's tumor thickness to determine that the transition in expression occurs at different thicknesses for different genes suggesting that the "transition zone" represents a critical time for the emergence of the metastatic phenotype. Several putative tumor oncogenes (<it>SPP-1</it>, <it>MITF</it>, <it>CITED-1</it>, <it>GDF-15</it>, <it>c-Met</it>, <it>HOX </it>loci) and suppressor genes (<it>PITX-1</it>, <it>CST-6</it>, <it>PDGFRL</it>, <it>DSC-3</it>, <it>POU2F3</it>, <it>CLCA2</it>, <it>ST7L</it>), were identified and validated by quantitative PCR as changing expression during this transition period. These are strong candidates for genes involved in the progression or suppression of the metastatic phenotype.</p> <p>Conclusion</p> <p>The gene expression profiling of primary, non-metastatic cutaneous tumors and metastatic melanoma has resulted in the identification of several genes that may be centrally involved in the progression and metastatic potential of melanoma. This has very important implications as we continue to develop an improved understanding of the metastatic process, allowing us to identify specific genes for prognostic markers and possibly for targeted therapeutic approaches.</p

    Biological processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility genes

    Get PDF
    Background: Recent advances in whole-genome association studies (WGASs) for human cancer risk are beginning to provide the part lists of low-penetrance susceptibility genes. However, statistical analysis in these studies is complicated by the vast number of genetic variants examined and the weak effects observed, as a result of which constraints must be incorporated into the study design and analytical approach. In this scenario, biological attributes beyond the adjusted statistics generally receive little attention and, more importantly, the fundamental biological characteristics of low-penetrance susceptibility genes have yet to be determined. Methods: We applied an integrative approach for identifying candidate low-penetrance breast cancer susceptibility genes, their characteristics and molecular networks through the analysis of diverse sources of biological evidence. Results: First, examination of the distribution of Gene Ontology terms in ordered WGAS results identified asymmetrical distribution of Cell Communication and Cell Death processes linked to risk. Second, analysis of 11 different types of molecular or functional relationships in genomic and proteomic data sets defined the 'omic' properties of candidate genes: i/ differential expression in tumors relative to normal tissue; ii/ somatic genomic copy number changes correlating with gene expression levels; iii/ differentially expressed across age at diagnosis; and iv/ expression changes after BRCA1 perturbation. Finally, network modeling of the effects of variants on germline gene expression showed higher connectivity than expected by chance between novel candidates and with known susceptibility genes, which supports functional relationships and provides mechanistic hypotheses of risk. Conclusion: This study proposes that cell communication and cell death are major biological processes perturbed in risk of breast cancer conferred by low-penetrance variants, and defines the common omic properties, molecular interactions and possible functional effects of candidate genes and proteins

    Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease

    Get PDF
    BACKGROUND Ustekinumab, a monoclonal antibody to the p40 subunit of interleukin-12 and inter-leukin-23, was evaluated as an intravenous induction therapy in two populations with moderately to severely active Crohn’s disease. Ustekinumab was also evaluated as subcutaneous maintenance therapy. METHODS We randomly assigned patients to receive a single intravenous dose of ustekinumab (either 130 mg or approximately 6 mg per kilogram of body weight) or placebo in two induction trials. The UNITI-1 trial included 741 patients who met the criteria for primary or secondary nonresponse to tumor necrosis factor (TNF) antagonists or had unacceptable side effects. The UNITI-2 trial included 628 patients in whom conventional therapy failed or unacceptable side effects occurred. Patients who completed these induction trials then participated in IM-UNITI, in which the 397 patients who had a response to ustekinumab were randomly assigned to receive subcutaneous maintenance injections of 90 mg of ustekinumab (either every 8 weeks or every 12 weeks) or placebo. The primary end point for the induction trials was a clinical response at week 6 (defined as a decrease from baseline in the Crohn’s Disease Activity Index [CDAI] score of ≥100 points or a CDAI score <150). The primary end point for the maintenance trial was remission at week 44 (CDAI score <150). RESULTS The rates of response at week 6 among patients receiving intravenous ustekinumab at a dose of either 130 mg or approximately 6 mg per kilogram were significantly higher than the rates among patients receiving placebo (in UNITI-1, 34.3%, 33.7%, and 21.5%, respectively, with P≤0.003 for both comparisons with placebo; in UNITI-2, 51.7%, 55.5%, and 28.7%, respectively, with P<0.001 for both doses). In the groups receiving maintenance doses of ustekinumab every 8 weeks or every 12 weeks, 53.1% and 48.8%, respectively, were in remission at week 44, as compared with 35.9% of those receiving placebo (P = 0.005 and P = 0.04, respectively). Within each trial, adverse-event rates were similar among treatment groups. CONCLUSIONS Among patients with moderately to severely active Crohn’s disease, those receiving intravenous ustekinumab had a significantly higher rate of response than did those receiving placebo. Subcutaneous ustekinumab maintained remission in patients who had a clinical response to induction therapy. (Funded by Janssen Research and Development; ClinicalTrials.gov numbers, NCT01369329, NCT01369342, and NCT01369355.
    corecore