201 research outputs found

    Isoform-specific insulin receptor signaling involves different plasma membrane domains

    Get PDF
    In pancreatic Ī²-cells, insulin selectively up-regulates the transcription of its own gene and that of the glucokinase gene by signaling through the two isoforms of the insulin receptor, i.e., A-type (Ex11āˆ’) and B-type (Ex11+), using different signaling pathways. However, the molecular mechanism(s) that allows the discrete activation of signaling cascades via the two receptor isoforms remains unclear. Here we show that activation of the insulin promoter via A-type and of the glucokinase promoter via B-type insulin receptor is not dependent on receptor isoformā€“specific differences in internalization but on the different localization of the receptor types in the plasma membrane. Our data demonstrate that localization and function of the two receptor types depend on the 12ā€“amino acid string encoded by exon 11, which acts as a sorting signal rather than as a physical spacer. Moreover, our data suggest that selective activation of the insulin and glucokinase promoters occurs by signaling from noncaveolae lipid rafts that are differently sensitive toward cholesterol depletion

    Ectopic leptin production by intraocular pancreatic islet organoids ameliorates the metabolic phenotype of ob/ob mice

    Get PDF
    The pancreatic islets of Langerhans consist of endocrine cells that secrete peptide hormones into the blood circulation in response to metabolic stimuli. When transplanted into the anterior chamber of the eye (ACE), pancreatic islets engraft and maintain morphological features of native islets as well as islet-specific vascularization and innervation patterns. In sufficient amounts, intraocular islets are able to maintain glucose homeostasis in diabetic mice. Islet organoids (pseudo-islets), which are formed by self-reassembly of islet cells following disaggregation and genetic manipulation, behave similarly to native islets. Here, we tested the hypothesis that genetically engineered intraocular islet organoids can serve as production sites for leptin. To test this hypothesis, we chose the leptin-deficient ob/ob mouse as a model system, which becomes severely obese, hyperinsulinemic, hyperglycemic, and insulin resistant. We generated a Tet-OFF-based beta-cell-specific adenoviral expression construct for mouse leptin, which allowed efficient transduction of native beta-cells, optical monitoring of leptin expression by co-expressed fluorescent proteins, and the possibility to switch-off leptin expression by treatment with doxycycline. Intraocular transplantation of islet organoids formed from transduced islet cells, which lack functional leptin receptors, to ob/ob mice allowed optical monitoring of leptin expression and ameliorated their metabolic phenotype by improving bodyweight, glucose tolerance, serum insulin, and C-peptide levels

    PI3K-C2 alpha Knockdown Results in Rerouting of Insulin Signaling and Pancreatic Beta Cell Proliferation

    Get PDF
    Insulin resistance is a syndrome that affects multiple insulin target tissues, each having different biological functions regulated by insulin. A remaining question is to mechanistically explain how an insulin target cell/tissue can be insulin resistant in one biological function and insulin sensitive in another at the same time. Here, we provide evidence that in pancreatic beta cells, knockdown of PI3K-C2 alpha expression results in rerouting of the insulin signal from insulin receptor (IR)-B/PI3K-C2 alpha/PKB-mediated metabolic signaling to IR-B/Shc/ERK-mediated mitogenic signaling, which allows the beta cell to switch from a highly glucose-responsive, differentiated state to a proliferative state. Our data suggest the existence of IR-cascade-selective insulin resistance, which allows rerouting of the insulin signal within the same target cell. Hence, factors involved in the rerouting of the insulin signal represent tentative therapeutic targets in the treatment of insulin resistance.11108Ysciescopu

    Inward and outward currents of native and cloned K(ATP) channels (Kir6.2/SUR1) share single-channel kinetic properties

    Get PDF
    BACKGROUND: The ATP-sensitive K(+) (K(ATP)) channel is found in a variety of tissues extending from the heart and vascular smooth muscles to the endocrine pancreas and brain. Common to all K(ATP) channels is the pore-forming subunit Kir6.x, a member of the family of small inwardly rectifying K(+) channels, and the regulatory subunit sulfonylurea receptor (SURx). In insulin secreting Ī²-cells in the endocrine part of the pancreas, where the channel is best studied, the K(ATP) channel consists of Kir6.2 and SUR1. Under physiological conditions, the K(ATP) channel current flow is outward at membrane potentials more positive than the K(+) equilibrium potential around āˆ’80 mV. However, K(ATP) channel kinetics have been extensively investigated for inward currents and the single-channel kinetic model is based on this type of recording, whereas only a limited amount of work has focused on outward current kinetics. METHODS: We have estimated the kinetic properties of both native and cloned K(ATP) channels under varying ionic gradients and membrane potentials using the patch-clamp technique. RESULTS: Analyses of outward currents in K(ATP) and cloned Kir6.2Ī”C26 channels, alone or co-expressed with SUR1, show openings that are not grouped in bursts as seen for inward currents. Burst duration for inward current corresponds well to open time for outward current. CONCLUSIONS: Outward K(ATP) channel currents are not grouped in bursts regardless of membrane potential, and channel open time for outward currents corresponds to burst duration for inward currents

    Expression of truncated Kir6.2 promotes insertion of functionally inverted ATP-sensitive K+ channels

    Get PDF
    ATP-sensitive K+ (KATP) channels couple cellular metabolism to electrical activity in many cell types. Wild-type KATP channels are comprised of four pore forming (Kir6.x) and four regulatory (sulfonylurea receptor, SURx) subunits that each contain RKR endoplasmic reticulum retention sequences that serve to properly translocate the channel to the plasma membrane. Truncated Kir6.x variants lacking RKR sequences facilitate plasma membrane expression of functional Kir6.x in the absence of SURx; however, the effects of channel truncation on plasma membrane orientation have not been explored. To investigate the role of truncation on plasma membrane orientation of ATP sensitive K+ channels, three truncated variants of Kir6.2 were used (Kir6.2Ī”C26, 6xHis-Kir6.2Ī”C26, and 6xHis-EGFP-Kir6.2Ī”C26). Oocyte expression of Kir6.2Ī”C26 shows the presence of a population of inverted inserted channels in the plasma membrane, which is not present when co-expressed with SUR1. Immunocytochemical staining of intact and permeabilized HEK293 cells revealed that the N-terminus of 6xHis-Kir6.2Ī”C26 was accessible on both sides of the plasma membrane at roughly equivalent ratios, whereas the N-terminus of 6xHis-EGFP-Kir6.2Ī”26 was only accessible on the intracellular face. In HEK293 cells, whole-cell electrophysiological recordings showed a ca. 50% reduction in K+ current upon addition of ATP to the extracellular solution for 6xHis-Kir6.2Ī”C26, though sensitivity to extracellular ATP was not observed in 6xHis-EGFP-Kir6.2Ī”C26. Importantly, the population of channels that is inverted exhibited similar function to properly inserted channels within the plasma membrane. Taken together, these data suggest that in the absence of SURx, inverted channels can be formed from truncated Kir6.x subunits that are functionally active which may provide a new model for testing pharmacological modulators of Kir6.x, but also indicates the need for added caution when using truncated Kir6.2 mutants. Ā© 2021, The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Human islet microtissues as an in vitro and an in vivo model system for diabetes

    Get PDF
    Loss of pancreatic Ī²-cell function is a critical event in the pathophysiology of type 2 diabetes. However, studies of its underlying mechanisms as well as the discovery of novel targets and therapies have been hindered due to limitations in available experimental models. In this study we exploited the stable viability and function of standardized human islet microtissues to develop a disease-relevant, scalable, and reproducible model of Ī²-cell dysfunction by exposing them to long-term glucotoxicity and glucolipotoxicity. Moreover, by establishing a method for highly-efficient and homogeneous viral transduction, we were able to monitor the loss of functional Ī²-cell mass in vivo by transplanting reporter human islet microtissues into the anterior chamber of the eye of immune-deficient mice exposed to a diabetogenic diet for 12 weeks. This newly developed in vitro model as well as the described in vivo methodology represent a new set of tools that will facilitate the study of Ī²-cell failure in type 2 diabetes and would accelerate the discovery of novel therapeutic agents

    Inactivation of class II PI3K-C2 alpha induces leptin resistance, age-dependent insulin resistance and obesity in male mice

    Get PDF
    AIMS/HYPOTHESIS: While the class I phosphoinositide 3-kinases (PI3Ks) are well-documented positive regulators of metabolism, the involvement of class II PI3K isoforms (PI3K-C2Ī±, -C2Ī² and -C2Ī³) in metabolic regulation is just emerging. Organismal inactivation of PI3K-C2Ī² increases insulin signalling and sensitivity, whereas PI3K-C2Ī³ inactivation has a negative metabolic impact. In contrast, the role of PI3K-C2Ī± in organismal metabolism remains unexplored. In this study, we investigated whether kinase inactivation of PI3K-C2Ī± affects glucose metabolism in mice. METHODS: We have generated and characterised a mouse line with a constitutive inactivating knock-in (KI) mutation in the kinase domain of the gene encoding PI3K-C2Ī± (Pik3c2a). RESULTS: While homozygosity for kinase-dead PI3K-C2Ī± was embryonic lethal, heterozygous PI3K-C2Ī± KI mice were viable and fertile, with no significant histopathological findings. However, male heterozygous mice showed early onset leptin resistance, with a defect in leptin signalling in the hypothalamus, correlating with a mild, age-dependent obesity, insulin resistance and glucose intolerance. Insulin signalling was unaffected in insulin target tissues of PI3K-C2Ī± KI mice, in contrast to previous reports in which downregulation of PI3K-C2Ī± in cell lines was shown to dampen insulin signalling. Interestingly, no metabolic phenotypes were detected in female PI3K-C2Ī± KI mice at any age. CONCLUSIONS/INTERPRETATION: Our data uncover a sex-dependent role for PI3K-C2Ī± in the modulation of hypothalamic leptin action and systemic glucose homeostasis. ACCESS TO RESEARCH MATERIALS: All reagents are available upon request

    The Transcription Factor Rfx3 Regulates Ī²-Cell Differentiation, Function, and Glucokinase Expression

    Get PDF
    OBJECTIVE: Pancreatic islets of perinatal mice lacking the transcription factor Rfx3 exhibit a marked reduction in insulin-producing beta-cells. The objective of this work was to unravel the cellular and molecular mechanisms underlying this deficiency. RESEARCH DESIGN AND METHODS: Immunofluorescence studies and quantitative RT-PCR experiments were used to study the emergence of insulin-positive cells, the expression of transcription factors implicated in the differentiation of beta-cells from endocrine progenitors, and the expression of mature beta-cell markers during development in Rfx3(-/-) and pancreas-specific Rfx3-knockout mice. RNA interference experiments were performed to document the consequences of downregulating Rfx3 expression in Min6 beta-cells. Quantitative chromatin immunoprecipitation (ChIP), ChIP sequencing, and bandshift experiments were used to identify Rfx3 target genes. RESULTS: Reduced development of insulin-positive cells in Rfx3(-/-) mice was not due to deficiencies in endocrine progenitors or beta-lineage specification, but reflected the accumulation of insulin-positive beta-cell precursors and defective beta-cells exhibiting reduced insulin, Glut-2, and Gck expression. Similar incompletely differentiated beta-cells developed in pancreas-specific Rfx3-deficient embryos. Defective beta-cells lacking Glut-2 and Gck expression dominate in Rfx3-deficent adults, leading to glucose intolerance. Attenuated Glut-2 and glucokinase expression, and impaired glucose-stimulated insulin secretion, were also induced by RNA interference-mediated inhibition of Rfx3 expression in Min6 cells. Finally, Rfx3 was found to bind in Min6 cells and human islets to two well-known regulatory sequences, Pal-1 and Pal-2, in the neuroendocrine promoter of the glucokinase gene. CONCLUSIONS: Our results show that Rfx3 is required for the differentiation and function of mature beta-cells and regulates the beta-cell promoter of the glucokinase gene
    • ā€¦
    corecore