1,960 research outputs found
Selection of allozyme genotypes of two species of marine gastropods (genus Littorina) in experiments of environmental stress by nonionic detergent and crude oil-surfactant mixtures
International audienc
A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli
Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another
High-energy environment of super-Earth 55 Cnc e I: Far-UV chromospheric variability as a possible tracer of planet-induced coronal rain
The irradiation of close-in planets by their star influences their evolution
and might be responsible for a population of ultra-short period planets eroded
to their bare core. In orbit around a bright, nearby G-type star, the
super-Earth 55 Cnc e offers the possibility to address these issues through UV
transit observations. We used the Hubble Space Telescope to observe the transit
in the FUV over 3 epochs in Apr. 2016, Jan. 2017, and Feb. 2017. These
observations reveal significant short- and long-term variability in 55 Cnc
chromospheric emission lines. In the last 2 epochs, we detected a larger flux
in the C III, Si III, and Si IV lines after the planet passed the approaching
quadrature, followed by a flux decrease in the Si IV doublet. In the second
epoch these variations are contemporaneous with flux decreases in the Si II and
C II doublet. All epochs show flux decreases in the N V doublet as well, albeit
at different orbital phases. These flux decreases are consistent with
absorption from optically thin clouds of gas, are mostly localized at low and
redshifted radial velocities in the star rest frame, and occur preferentially
before and during the transit. These 3 points make it unlikely that the
variations are purely stellar, yet we show that the occulting material is also
unlikely to originate from the planet. We tentatively propose that the motion
of 55 Cnc e at the fringes of the stellar corona leads to the formation of a
cool coronal rain. The inhomogeneity and temporal evolution of the stellar
corona would be responsible for the differences between the visits. Additional
variations are detected in the C II doublet in the first epoch and in the O I
triplet in all epochs with a different behavior that points toward intrinsic
stellar variability. Further observations at FUV wavelengths are required to
disentangle between star-planet interactions and the activity of the starComment: 22 pages, 20 figures, accepted for publication in A&
The long egress of GJ~436b's giant exosphere
The M dwarf GJ 436 hosts a transiting warm Neptune known to experience
atmospheric escape. Previous observations revealed the presence of a giant
hydrogen exosphere transiting the star for more than 5 h, and absorbing up to
56% of the flux in the blue wing of the stellar Lyman-{\alpha} line of neutral
hydrogen (H i Ly{\alpha}). The unexpected size of this comet-like exosphere
prevented observing the full transit of its tail. In this Letter, we present
new Ly{\alpha} observations of GJ 436 obtained with the Space Telescope Imaging
Spectrograph (STIS) instrument onboard the Hubble Space Telescope. The
stability of the Ly{\alpha} line over six years allowed us to combine these new
observations with archival data sets, substantially expanding the coverage of
the exospheric transit. Hydrogen atoms in the tail of the exospheric cloud keep
occulting the star for 10-25 h after the transit of the planet, remarkably
confirming a previous prediction based on 3D numerical simulations with the
EVaporating Exoplanet code (EVE). This result strengthens the interpretation
that the exosphere of GJ 436b is shaped by both radiative braking and charge
exchanges with the stellar wind. We further report flux decreases of 15 +/- 2%
and 47 +/- 10% in the red wing of the Ly{\alpha} line and in the line of
ionised silicon (Si iii). Despite some temporal variability possibly linked
with stellar activity, these two signals occur during the exospheric transit
and could be of planetary origin. Follow-up observations will be required to
assess the possibility that the redshifted Ly{\alpha} and Si iii absorption
signatures arise from interactions between the exospheric flow and the magnetic
field of the star.Comment: 10 pages, 7 figures, published in A&
Modulating attentional load affects numerosity estimation: evidence against a pre-attentive subitizing mechanism
Traditionally, the visual enumeration of a small number of items (1 to about 4), referred to as subitizing, has been thought of as a parallel and pre-attentive process and functionally different from the serial attentive enumeration of larger numerosities. We tested this hypothesis by employing a dual task paradigm that systematically manipulated the attentional resources available to an enumeration task. Enumeration accuracy for small numerosities was severely decreased as more attentional resources were taken away from the numerical task, challenging the traditionally held notion of subitizing as a pre-attentive, capacity-independent process. Judgement of larger numerosities was also affected by dual task conditions and attentional load. These results challenge the proposal that small numerosities are enumerated by a mechanism separate from large numerosities and support the idea of a single, attention-demanding enumeration mechanism
A spectral survey of an ultra-hot Jupiter: Detection of metals in the transmission spectrum of KELT-9 b
Context: KELT-9 b exemplifies a newly emerging class of short-period gaseous
exoplanets that tend to orbit hot, early type stars - termed ultra-hot
Jupiters. The severe stellar irradiation heats their atmospheres to
temperatures of K, similar to the photospheres of dwarf stars. Due
to the absence of aerosols and complex molecular chemistry at such
temperatures, these planets offer the potential of detailed chemical
characterisation through transit and day-side spectroscopy. Studies of their
chemical inventories may provide crucial constraints on their formation process
and evolution history.
Aims: To search the optical transmission spectrum of KELT-9 b for absorption
lines by metals using the cross-correlation technique.
Methods: We analyse 2 transits observed with the HARPS-N spectrograph. We use
an isothermal equilibrium chemistry model to predict the transmission spectrum
for each of the neutral and singly-ionized atoms with atomic numbers between 3
and 78. Of these, we identify the elements that are expected to have spectral
lines in the visible wavelength range and use those as cross-correlation
templates.
Results: We detect absorption of Na I, Cr II, Sc II and Y II, and confirm
previous detections of Mg I, Fe I, Fe II and Ti II. In addition, we find
evidence of Ca I, Cr I, Co I, and Sr II that will require further observations
to verify. The detected absorption lines are significantly deeper than model
predictions, suggesting that material is transported to higher altitudes where
the density is enhanced compared to a hydrostatic profile. There appears to be
no significant blue-shift of the absorption spectrum due to a net day-to-night
side wind. In particular, the strong Fe II feature is shifted by km~s, consistent with zero. Using the orbital velocity of the
planet we revise the steller and planetary masses and radii.Comment: Submitted to Astronomy and Astrophysics on January 18, 2019. Accepted
on May 3, 2019. 26 pages, 11 figure
Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) I. Detection of hot neutral sodium at high altitudes on WASP-49b
High-resolution optical spectroscopy during the transit of HD 189733b, a
prototypical hot Jupiter, allowed the resolution of the Na I D sodium lines in
the planet, giving access to the extreme conditions of the planet upper
atmosphere. We have undertaken HEARTS, a spectroscopic survey of exoplanet
upper atmospheres, to perform a comparative study of hot gas giants and
determine how stellar irradiation affect them. Here, we report on the first
HEARTS observations of the hot Saturn-mass planet WASP-49b. We observed the
planet with the HARPS high-resolution spectrograph at ESO 3.6m telescope. We
collected 126 spectra of WASP-49, covering three transits of WASP-49b. We
analyzed and modeled the planet transit spectrum, while paying particular
attention to the treatment of potentially spurious signals of stellar origin.
We spectrally resolve the Na I D lines in the planet atmosphere and show that
these signatures are unlikely to arise from stellar contamination. The large
contrasts of (D) and (D) require the
presence of hot neutral sodium ( K) at high altitudes
(1.5 planet radius or 45,000 km). From estimating the cloudiness
index of WASP-49b, we determine its atmosphere to be cloud free at the
altitudes probed by the sodium lines. WASP-49b is close to the border of the
evaporation desert and exhibits an enhanced thermospheric signature with
respect to a farther-away planet such as HD 189733b.Comment: Accepted for publication in A&A. 14 page
Wind of Change: retrieving exoplanet atmospheric winds from high-resolution spectroscopy
Context. The atmosphere of exoplanets has been studied extensively in recent
years, using numerical models to retrieve chemical composition, dynamical
circulation or temperature from data. One of the best observational probes in
transmission is the sodium doublet, due to its large cross section. However,
modelling the shape of the planetary sodium lines has proven to be challenging.
Models with different assumptions regarding the atmosphere have been employed
to fit the lines in the literature, yet statistically sound direct comparisons
of different models are needed to paint a clear picture. Aims. We will compare
different wind and temperature patterns and provide a tool to distinguish them
driven by their best fit for the sodium transmission spectrum of the hot
Jupiter HD 189733b. We parametrise different possible wind patterns already
tested in literature and introduce the new option of an upwards driven vertical
wind. Methods. We construct a forward model where the wind speed, wind geometry
and temperature are injected into the calculation of the transmission spectrum.
We embed this forward model in a nested sampling retrieval code to rank the
models via their Bayesian evidence. Results. We retrieve a best-fit to the HD
189733b data for vertical upward winds
km/s at altitudes above
bar. With the current data from HARPS, we cannot distinguish wind
patterns for higher pressure atmospheric layers. Conclusions. We show that
vertical upwards winds in the upper atmosphere are a possible explanation for
the broad sodium signature in hot Jupiters. We highlight other influences on
the width of the doublet and explore strong magnetic fields acting on the lower
atmosphere as one possible origin of the retrieved wind speed.Comment: 17 pages, 30 figures, accepted for publication in Astronomy &
Astrophysics (04.12.2019
- …