1,453 research outputs found

    Physical consequences of P\neqNP and the DMRG-annealing conjecture

    Full text link
    Computational complexity theory contains a corpus of theorems and conjectures regarding the time a Turing machine will need to solve certain types of problems as a function of the input size. Nature {\em need not} be a Turing machine and, thus, these theorems do not apply directly to it. But {\em classical simulations} of physical processes are programs running on Turing machines and, as such, are subject to them. In this work, computational complexity theory is applied to classical simulations of systems performing an adiabatic quantum computation (AQC), based on an annealed extension of the density matrix renormalization group (DMRG). We conjecture that the computational time required for those classical simulations is controlled solely by the {\em maximal entanglement} found during the process. Thus, lower bounds on the growth of entanglement with the system size can be provided. In some cases, quantum phase transitions can be predicted to take place in certain inhomogeneous systems. Concretely, physical conclusions are drawn from the assumption that the complexity classes {\bf P} and {\bf NP} differ. As a by-product, an alternative measure of entanglement is proposed which, via Chebyshev's inequality, allows to establish strict bounds on the required computational time.Comment: Accepted for publication in JSTA

    Anisotropy in nanocellular polymers promoted by the addition of needle‐like sepiolites

    Get PDF
    This work presents a new strategy for obtaining nanocellular materials with high anisotropy ratios by means of the addition of needle‐like nanoparticles. Nanocellular polymers are of great interest due to their outstanding properties, whereas anisotropic structures allow the realization of improved thermal and mechanical properties in certain directions. Nanocomposites based on poly(methyl methacrylate) (PMMA) with nanometric sepiolites are generated by extrusion. From the extruded filaments, cellular materials are produced using a two‐step gas dissolution foaming method. The effect of adding various types and contents of sepiolites is investigated. As a result of the extrusion process, the needle‐like sepiolites are aligned in the machine direction in the solid nanocomposites. Regarding the cellular materials, the addition of sepiolites allows one to obtain anisotropic nanocellular polymers with cell sizes of 150 to 420 nm and cell nucleation densities of 1013–1014 nuclei cm−3 and presenting anisotropy ratios ranging from 1.38 to 2.15, the extrusion direction being the direction of the anisotropy. To explain the appearance of anisotropy, a mechanism based on cell coalescence is proposed and discussed. In addition, it is shown that it is possible to control the anisotropy ratio of the PMMA/sepiolite nanocellular polymers by changing the amount of well‐dispersed sepiolites in the solid nanocomposites

    Tipificació de dos noms Cavanillesians, Galium Fruticescens (Rubiaceae) i Scorzonera pumila (Compositae)

    Get PDF
    The Cavanillesian names Galium fruticescens and Scorzonera pumila, basionym of Launaea pumila, are lectotypified from original specimens preserved in the Cavanilles herbarium in the Royal Botanic Garden of Madrid (MA).Els noms cavanillesians Galium fruticescens i Scorzonera pumila, basiònim de Launaea pumila, són lectotipificats a partir d’espècimens que pertanyen al material original de l’autor conservat a l’herbari del Reial Jardí Botànic de Madrid (MA)

    Defect formation and local gauge invariance

    Get PDF
    We propose a new mechanism for formation of topological defects in a U(1) model with a local gauge symmetry. This mechanism leads to definite predictions, which are qualitatively different from those of the Kibble-Zurek mechanism of global theories. We confirm these predictions in numerical simulations, and they can also be tested in superconductor experiments. We believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and the equations of motion added. To appear in PRL (http://prl.aps.org/

    Radiation from low-momentum zoom-whirl orbits

    Full text link
    We study zoom-whirl behaviour of equal mass, non-spinning black hole binaries in full general relativity. The magnitude of the linear momentum of the initial data is fixed to that of a quasi-circular orbit, and its direction is varied. We find a global maximum in radiated energy for a configuration which completes roughly one orbit. The radiated energy in this case exceeds the value of a quasi-circular binary with the same momentum by 15%. The direction parameter only requires minor tuning for the localization of the maximum. There is non-trivial dependence of the energy radiated on eccentricity (several local maxima and minima). Correlations with orbital dynamics shortly before merger are discussed. While being strongly gauge dependent, these findings are intuitive from a physical point of view and support basic ideas about the efficiency of gravitational radiation from a binary system.Comment: 9 pages, 6 figures, Amaldi8 conference proceedings as publishe

    Complete Classification of the String-like Solutions of the Gravitating Abelian Higgs Model

    Get PDF
    The static cylindrically symmetric solutions of the gravitating Abelian Higgs model form a two parameter family. In this paper we give a complete classification of the string-like solutions of this system. We show that the parameter plane is composed of two different regions with the following characteristics: One region contains the standard asymptotically conic cosmic string solutions together with a second kind of solutions with Melvin-like asymptotic behavior. The other region contains two types of solutions with bounded radial extension. The border between the two regions is the curve of maximal angular deficit of 2π2\pi.Comment: 12 pages, 4 figure

    Cosmic Strings in the Abelian Higgs Model with Conformal Coupling to Gravity

    Full text link
    Cosmic string solutions of the abelian Higgs model with conformal coupling to gravity are shown to exist. The main characteristics of the solutions are presented and the differences with respect to the minimally coupled case are studied. An important difference is the absence of Bogomolnyi cosmic string solutions for conformal coupling. Several new features of the abelian Higgs cosmic strings of both types are discussed. The most interesting is perhaps a relation between the angular deficit and the central magnetic field which is bounded by a critical value.Comment: 22 pages, 10 figures; to appear in Phys. Rev.

    Chronic Worry as Avoidance of Arousal

    Get PDF
    Previous research suggests that worry is primarily a verbal-linguistic activity that may serve as a method of cognitive avoidance of fearful imagery. The purpose of the present study was to examine cognitive avoidance in high worriers (N = 22) and low worriers (N = 24) using psychophysiological measures and a modified dichotic listening task. The task involved presenting neutral words into an unattending ear while worry or neutral scenarios were presented into the attending ear. Participants were given a surprise word recognition test of the words presented to provide evidence of cognitive avoidance beyond self-report. Contrary to the hypotheses, high worriers did not have less physiological reactivity than did low worriers. Low worriers recognized more words than did high worriers overall. High worriers remembered more words from the worry scenario than the neutral condition, as would be expected if they attempted to avoid the worry scenario. Implications for treatment of worry and the use of the dichotic listening task in researching worry are discussed

    Chronic Worry as Avoidance of Arousal

    Get PDF
    Previous research suggests that worry is primarily a verbal-linguistic activity that may serve as a method of cognitive avoidance of fearful imagery. The purpose of the present study was to examine cognitive avoidance in high worriers (N = 22) and low worriers (N = 24) using psychophysiological measures and a modified dichotic listening task. The task involved presenting neutral words into an unattending ear while worry or neutral scenarios were presented into the attending ear. Participants were given a surprise word recognition test of the words presented to provide evidence of cognitive avoidance beyond self-report. Contrary to the hypotheses, high worriers did not have less physiological reactivity than did low worriers. Low worriers recognized more words than did high worriers overall. High worriers remembered more words from the worry scenario than the neutral condition, as would be expected if they attempted to avoid the worry scenario. Implications for treatment of worry and the use of the dichotic listening task in researching worry are discussed

    Black hole head-on collisions and gravitational waves with fixed mesh-refinement and dynamic singularity excision

    Full text link
    We present long-term-stable and convergent evolutions of head-on black hole collisions and extraction of gravitational waves generated during the merger and subsequent ring-down. The new ingredients in this work are the use of fixed mesh-refinement and dynamical singularity excision techniques. We are able to carry out head-on collisions with large initial separations and demonstrate that our excision infrastructure is capable of accommodating the motion of the individual black holes across the computational domain as well as their their merger. We extract gravitational waves from these simulations using the Zerilli-Moncrief formalism and find the ring-down radiation to be, as expected, dominated by the l=2, m=0 quasi-normal mode. The total radiated energy is about 0.1 % of the total ADM mass of the system.Comment: Revised version, 1 figure added, accepted for publication in Phys.Rev.D, 15 pages, 10 figures, revtex 4.
    corecore